

Supported by the Swedish International Development Cooperation Agency

AUTHORSHIP

Quantis

Laura Peano, Quantis Violaine Magaud, Quantis

To be cited as:

IUCN-EA-QUANTIS, 2020, National Guidance for plastic pollution hotspotting and shaping action, Country report Thailand

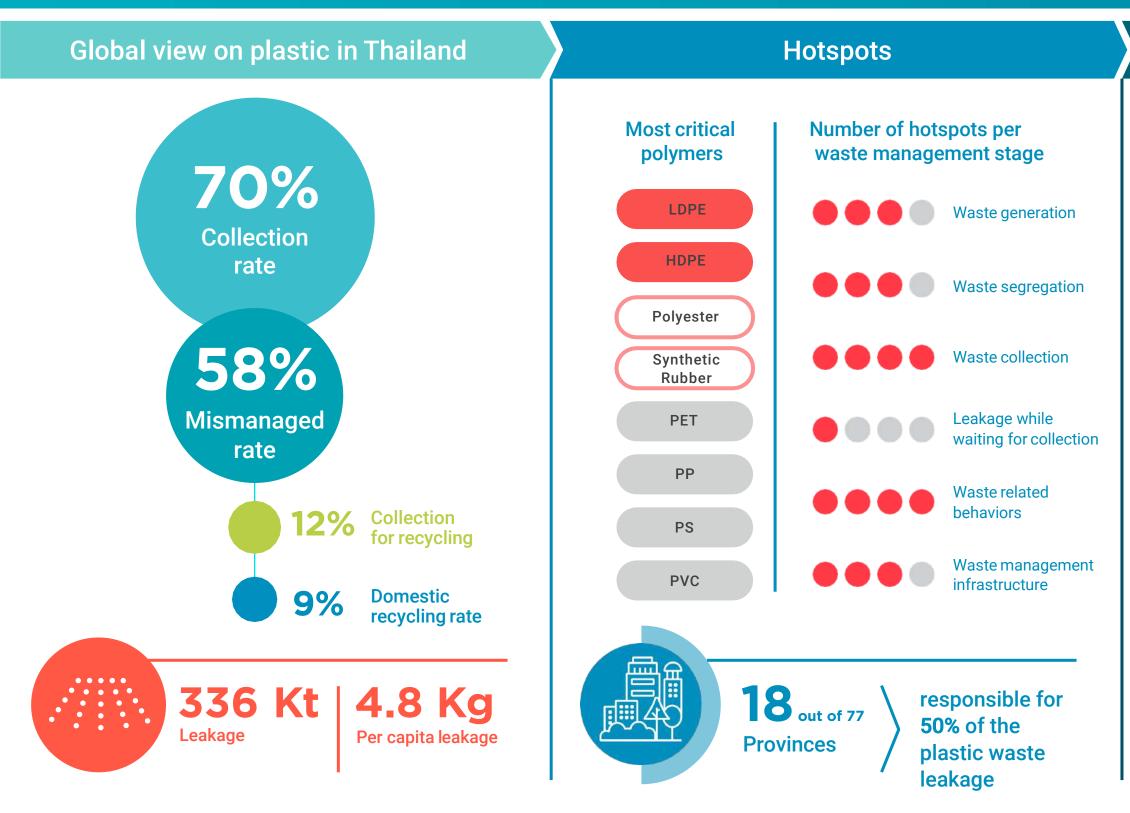
Reviewers

Siriporn Sriaram, IUCN Maeve Nightingale, IUCN Feng Wang, UNEP Ran Xie, UNEP

Design

Martha Perea Palacios, ORO

Plastic pollution hotspots: Thailand 2


ACKNOWLEDGEMENT

It is with deep gratitude that the IUCN Marine Plastics and Coastal Communities (MARPLASTICCs) project leaders wish to thank the various partners from government, private sector and industry, academia and research, civil society and nongovernmental organizations that contributed to this work through their participation in workshops, meetings, field excursions, and related consultations within the country.

This work could not have been accomplished, first and foremost, without the partners and stakeholders who supported the data collection efforts within each country. Finally, the tremendous technical guidance, cooperation, and support from Feng Wang and Ran Xie of the UNEP was pivotal in the development of the hotspotting methodology guidance. Above all, the MARPLASTICCs team acknowledges the generous support of the Swedish International Development Cooperation Agency (Sida). IUCN wishes to thank the Government of Thailand, the many partners who contributed to this work, and members of the National Steering Committee (NSC) of the project for their strategic guidance and support in ensuring that national activities and engagements were executed in a smooth manner. We would particularly like to thank WWF for the fruitful collaboration that greatly improved the quality of the project.

Thanks also goes to colleagues in the ARO regional and country teams for their continuous and invaluable support throughout the implementation of the assessment, in particular Aban Marker Kabraji, Regional Director, Asia, Maeve Nightingale, Siriporn Sriaram, Vanessa Carriedo, and Supranee Kampongsun. In addition, the MARPLASTICCs team extends its gratitude to colleagues at IUCN Secretariat.

SUMMARY AT A GLANCE

Shaping action from the hotspots

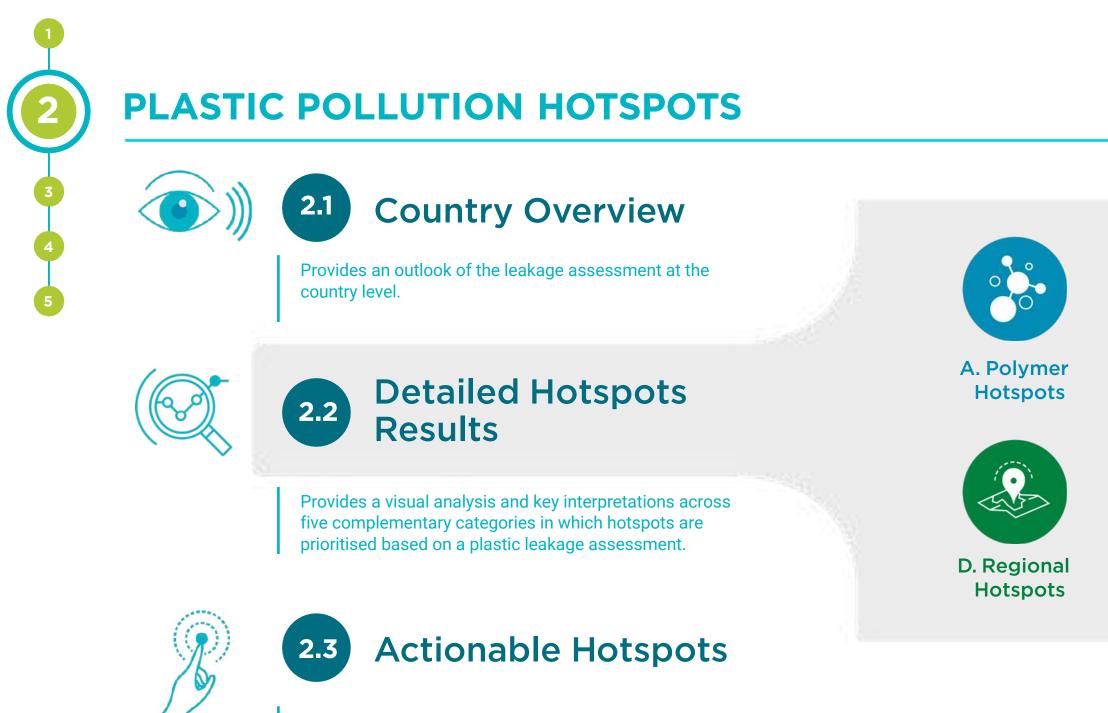
INTRODUCTION TO THE GUIDANCE

Provides the objectives of the Guidance, and introduces its associated workflow and main deliverables.

PLASTIC POLLUTION HOTSPOTS

Provides a detailed assessment of plastic leakage across five distinct yet complementary hotspots categories and draws clear statements to help shape action.

SHAPING ACTION


Provides a preliminary set of possible interventions and instruments in line with the plastic pollution hotspots results.

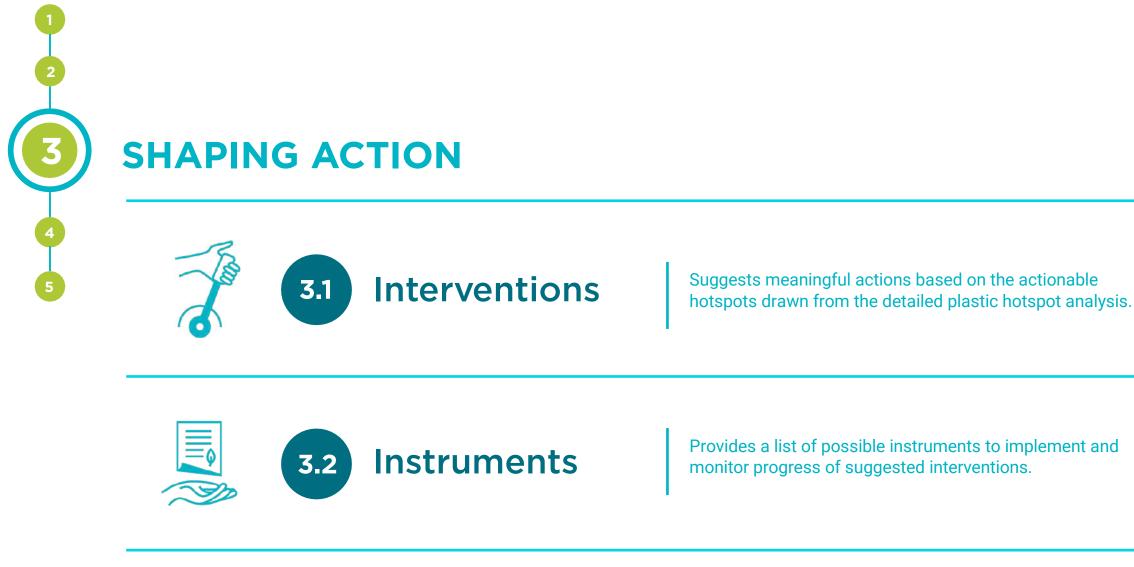
APPENDICES

Provides additional information including results data tables, hotspot score assessments and modelling assumptions.

BIBLIOGRAPHY

5

Formulates clear statements based on the detailed hotspot analysis to help shape action towards plastic leakage abatement.


B. Application Hotspots

C. Sector Hotspots

E. Waste Management Hotspots

7

Provides data tables with the detailed figures behind the graphs.

Provides an in-depth analysis of the quality scores behind the graphs.

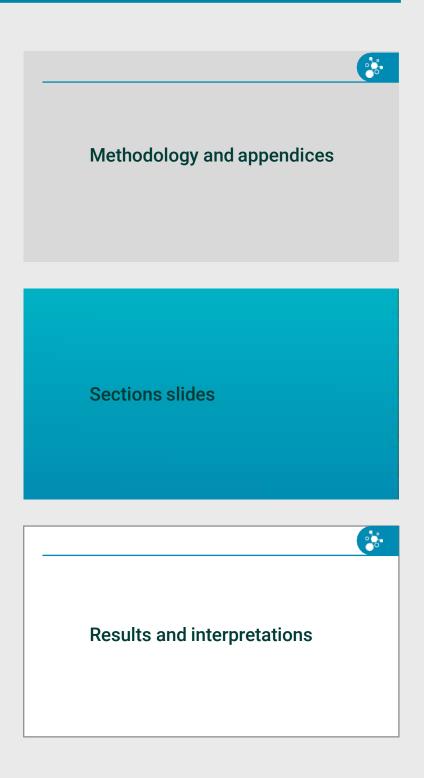
ICONS AND COLOUR CODE TO GUIDE THE READER

Reference to the methodology (module/tool)

Learnings, that complement the key take aways with more details, of information that is not necessarily visible on the graph

Reference to the appendices

Limitations of the study, can be inaccurate data or gap in the modelling



Key take away as the main conclusion of a graph or result in a writen format

Things we foresee to unlock the limitations. They can serve as guidance for future studies

KEY DEFINITIONS

Hotspots: They refer to the most relevant plastic polymers, applications, industrial sectors, regions or waste management stages causing the leakage of plastics into the environment (including land, air, water and marine environment), as well as associated impacts, through the life cycle of plastic products.

Interventions: They are tangible actions that can be taken to mitigate hotspots and are to be prioritised and designed to address the most influential hotspots in the plastic value chain.

Instruments: They are the ways an intervention may be practically implemented through specific regulatory, financial or informative measures, in light of context factors such as country dynamics and existing measures. As an illustrative example, a country may identify "mismanaged polyethylene bottles" as one of its hotspots. A relevant intervention may be an increase in bottle collection rate. A relevant instrument may be to instate a bottle return deposit scheme.

Properly disposed: Waste fraction that is disposed in a waste management system where no leakage is expected to occur, such as an incineration facility or a sanitary landfill. We define a sanitary landfill as a particular area where large quantities of waste are deliberately disposed in a controlled manner (e.g., waste being covered on a daily basis, as well as the bottom of the landfill designed in a way to prevent waste from leaching out). Landfilling is mainly the result of a formal collection sector.

Improperly disposed: Waste fraction that is disposed in a waste management system where leakage is expected to occur, such as a dumpsite or an unsanitary landfill. A dumpsite is a particular area where large quantities of waste are deliberately disposed in an uncontrolled manner, and can be the result of both the formal and informal sectors. A landfill is considered as unsanitary when waste management guality standards are not met, thus entailing a potential for leakage.

Littering: Incorrect disposal of small, one-off items, such as: throwing a cigarette, dropping a crisp packet, or a drink cup. Most of the time these items end-up on the road or side-ways. They may or may not be collected by municipal street cleaning.

Uncollected: Waste fraction (including littering) that is not collected by the formal sector.

Mismanaged waste: It is defined as the sum of uncollected and improperly managed waste. The mismanaged waste index is the ratio of the mismanaged waste and the total waste. It is abbreviated as MWI and its value given in percentage.

Leakage: Plastic that is released to the environment, specifically to rivers and oceans. The leakage rate is ratio between leakage and total waste generated, and its value is given in percentage.

Release rate: It is defined as the ratio between leakage and total mismanaged waste, and its value is given in percentage.

Macro-plastic: Large plastic waste readily visible and with dimensions larger than 5 mm, typically plastic packaging, plastic infrastructure or fishing nets.

Micro-plastic: Small plastic particulates below 5 mm in size and above 1 mm. Two types of micro-plastics are contaminating the world's oceans: primary and secondary micro-plastics. In this study, we focus on primary micro-plastics which are are plastics directly released into the environment in the form of small particulates.

Mass balance: Mass balancing is a mathematical process aiming at equalising inputs and outputs of a given material flow across a system boundary. In our case, inputs consist of domestic production and imports while outputs consists of exports, waste generation and increase of stock. A mass balance allows to check data consistency and helps reconcile different datasets when needed.

Formal sector: Waste management activities planned, sponsored, financed, carried out or regulated and/or recognized by the local authorities or their agents, usually through contracts, licenses or concessions

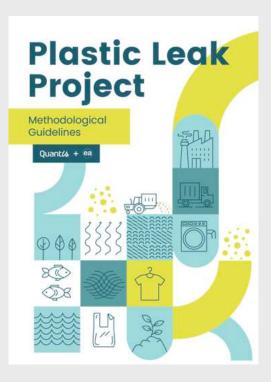
Informal sector: Individuals or a group of individuals who are involved in waste management activities, but are not formally registered or formally responsible for providing waste management services. Newly established formalized organizations of such individuals; for example, cooperatives, social enterprises and programs led by non-governmental organizations (NGOs), can also be considered as the informal sector for the purpose of this methodology.

For additional definitions, please refer to the publication: United Nations Environment Programme (2020). National guidance for plastic pollution hotspotting and shaping action - Introduction report. Boucher J.;; M. Zgola, et al. United Nations Environment Programme. Nairobi, Kenya. Definitions of formal and informal sector are taken from: United Nations Framework Convention On Climate Change - Clean Development Mechanism (UNFCCC-CDM), 2010, AMS-III.AJ. EB70, Annex 28 - Small-scale Methodology: Recovery and Recycling of Materials from Solid Wastes.

WHAT WE MEAN BY PLASTIC LEAKAGE / IMPACTS

By plastic leakage we refer to a quantity of plastic entering rivers and the oceans

By plastic impact we refer to a potential effect the leaked plastic may have on ecosystems and/or human health

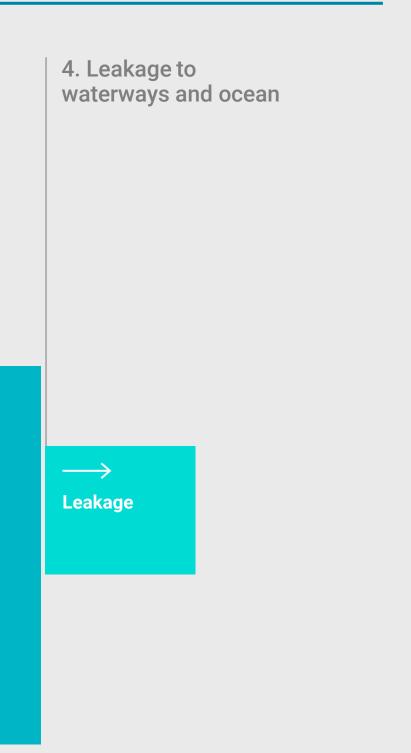

Parameters ruling the leakage quantification in the model

- General waste management
- Recycling
- Wastewater and run-off water management
- Plastic consumption patterns
- Population density
- Value of the polymer
- Size of application
- Type of use
- Distance to shore and rivers
- Hydrological patterns

Parameters ruling qualitative impact assessment

- Beach clean-up data
- Size and shape of applications
- Presence of toxic substances in polymers or additives

Leaked plastic stems from uncollected and improperly disposed waste.


Note that the rest of the uncollected and improperly disposed plastic may be leaking into other environmental compartments such as "soil", "air" or "other terrestrial compartment" as defined in the Plastic Leak Project (PLP) guidance.

This information is not required to shape action but could be calculated using the PLP guidance.

LINK to the PLP guidance

LEAKAGE PATHWAY AT A GLANCE

1. Mass of macroplastic waste	2. Collection	3. Waste management	
<section-header></section-header>	Collected (through the formal waste collection system or informal sector)	Collected for recycling Properly disposed * Sanitary landfills * Incineration facilities	Domestic → recycling → Export of → waste
		 Improperly disposed * Dumpsites * Unsanitary landfills Uncollected 	→ Mismanaged

KEY ABBREVIATIONS AND UNITS

Polymer abbreviations

NAME	ABBREVIATION	
Polyethylene Terephthalate	PET*	
Polypropylene	PP	
Low-density Polyethylene	LDPE	
High-density Polyethylene	HDPE	
Polystyrene	PS	
Polyvinyl Chloride	PVC	

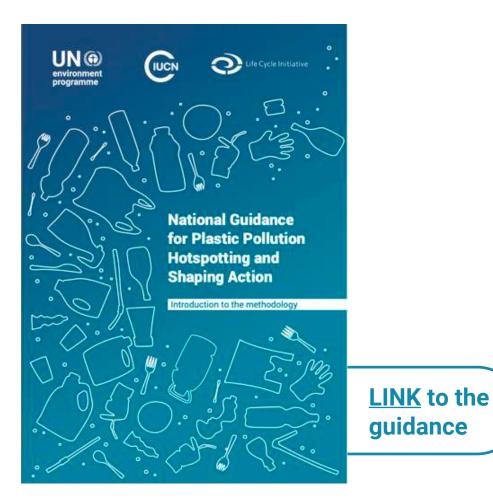
Calculation variables

NAME	ABBREVIATION		NAME	SYMBOL
Mismanaged waste index	MWI	I	Gram	g
Leakage rate	LR		Kilogram	kg
Release rate	RR		Tonne	t
			Kilo tonne (or thousand tonne)	kt
			Mega tonne (or million tonne)	Mt
			Kilometer	km
			Square kilometer	km ²

Key units

INTRODUCTION TO THE 1 GUIDANCE

National guidance for plastic pollution hotspotting and shaping action



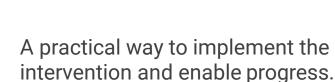
Plastic pollution hotspots: Thailand 14

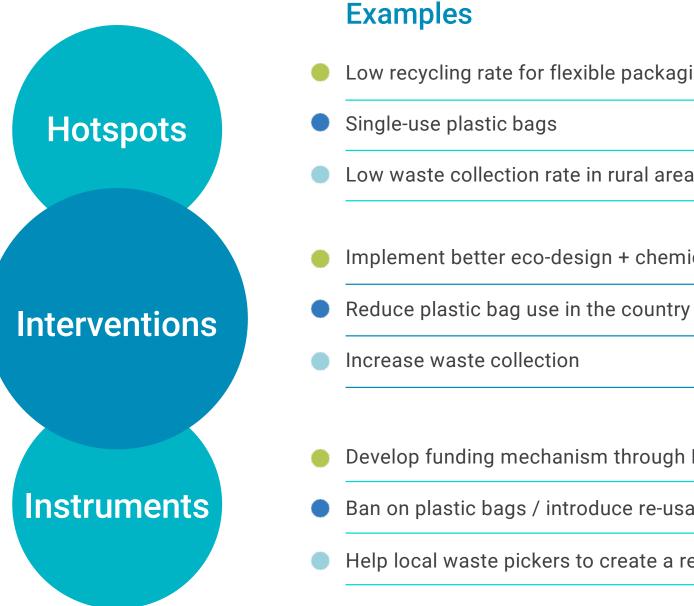
SCHEMATIC OF THE GUIDANCE

The guidance allows users to:

- 1. Generate country-specific plastic waste management datasets
- 2. Identify plastic leakage and pollution hotspots
- 3. Prioritise actions

RELATIONSHIP BETWEEN HOTSPOTS, **INTERVENTIONS AND INSTRUMENTS**


The guidance is built upon the backbone of three questions: where to act? (Hotspots), what to do? (Interventions) and how to do it? (Instruments)



3

A component of the system that directly or indirectly contributes to the magnitude of plastic leakage and/or its impacts. It can be a component of the system, a type of product/polymer or a region within the country.

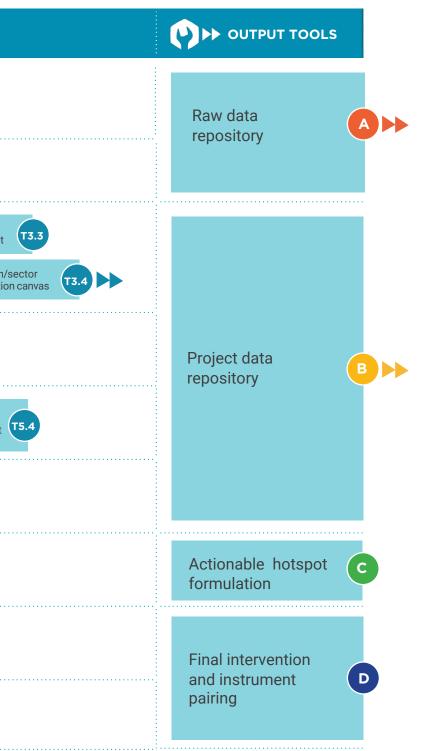
An action that can be taken to mitigate the leakage from a given hotspot or reduce its impacts.

Low recycling rate for flexible packaging

Low waste collection rate in rural areas

Implement better eco-design + chemical recycling

Develop funding mechanism through EPR scheme


Ban on plastic bags / introduce re-usable alternative

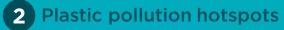
Help local waste pickers to create a revenue stream

STRUCTURE OF TOOLS ASSOCIATED WITH EACH MODULE

				ASSESSMENT TOOLS	
T1	INVENTORY OF PLASTIC FLOWS	Inventory of data sources	COMTRADE data extraction		
T2	CHARACTERISATION OF WASTE MANAGEMENT	and data gaps T2.1 templates Waste model canvas T2.3			
ТЗ	MODELLING POLYMER/APPLICATION/		Fisheries leakage T3.1	Polymer application/ sector MFA & T3.2	MFA modelling quality assessment
	SECTOR HOTSPOTS		calculation	leakage calculation	Polymer/application/s hotspots prioritizatior
T4	IDENTIFICATION OF WASTE MANAGEMENT HOTSPOTS		Waste management hotspot canvas		
Т5	MODELLING REGIONAL HOTPOTS	Waste data by archetype	GIS model T5.2	Leakage calculation T5.3	GIS modelling quality assessment
Тб	ASSESSING IMPACTS		Plastic application impact assessment		
S1	ACTIONABLE HOTSPOT FORMULATION	T3.4			
S2	INTERVENTION IDENTIFICATION	Interventions library template S2.1	Interventions selection s2.2	Interventions s2.3 prioritisation	
S 3	INSTRUMENT ALIGNMENT	Instruments library 53.1	Instruments selection \$3.2	Instruments prioritisation \$3.3	

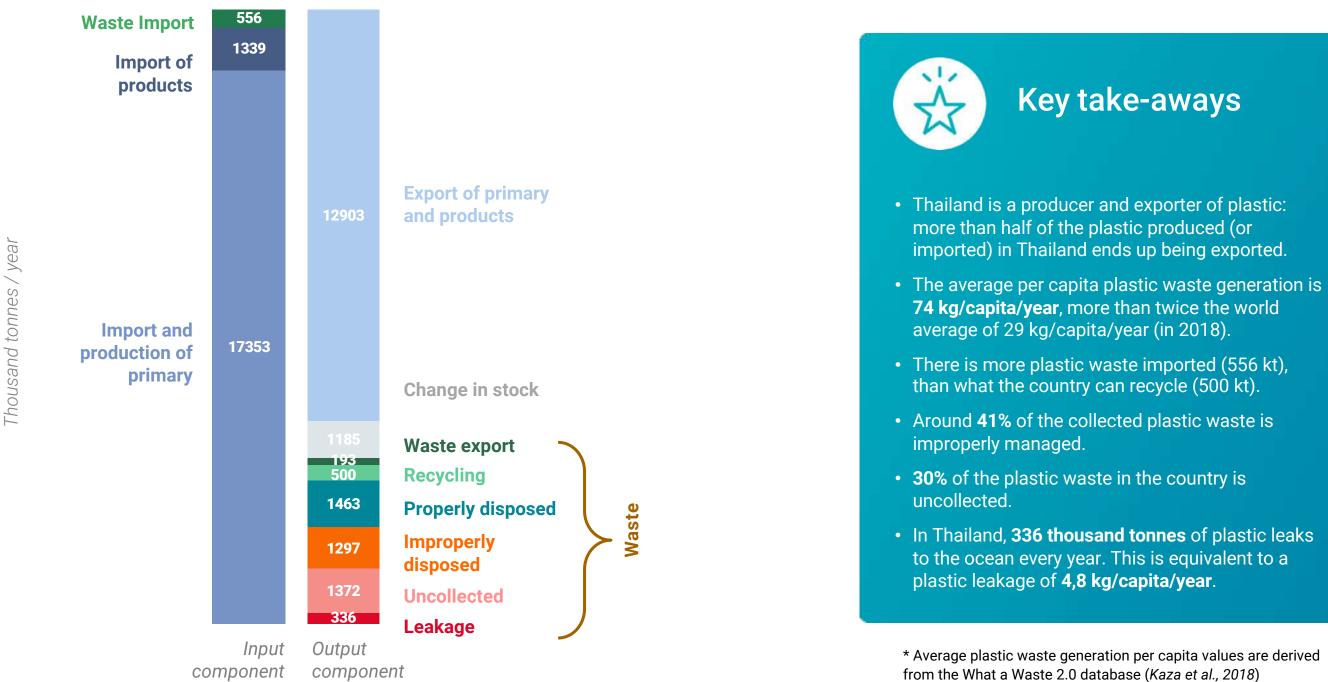
DISCLAIMER

This report intends to present **only the results of the analysis** and not the detailed modelling process.



Additional information on the methodology and modelling process can be found directly in the **modules and tools** associated with the guidance and highlighted by this icon.

Plastic pollution hotspots: Thailand 19

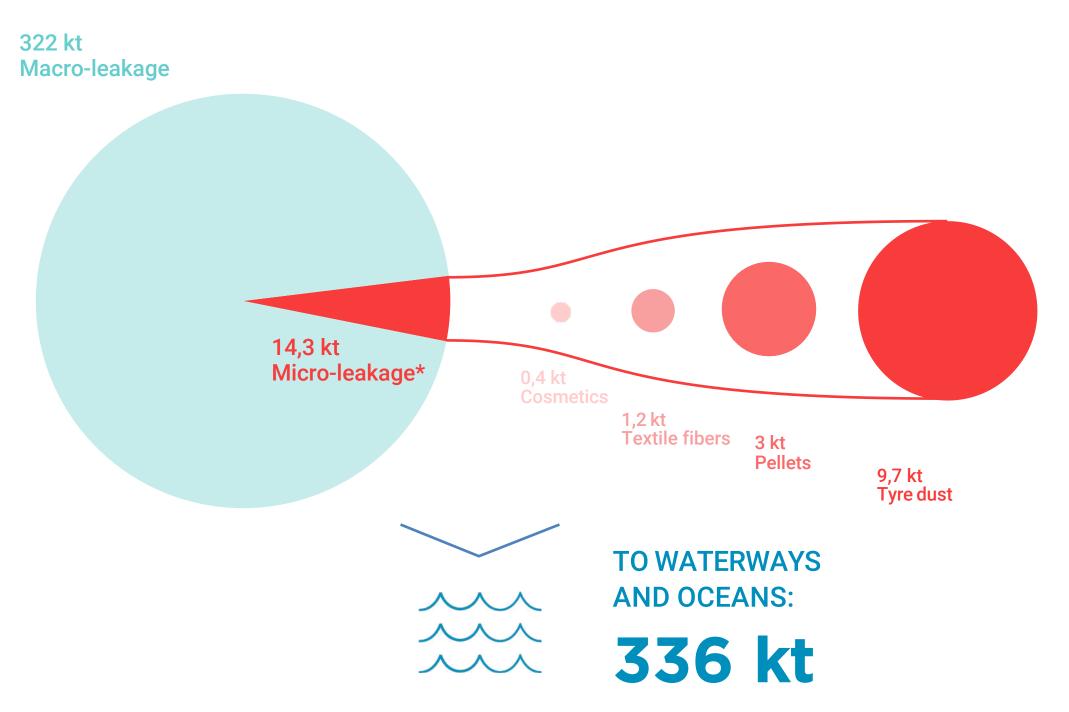

COUNTRY OVERVIEW 2.1

ea + Quantis

Plastic pollution hotspots: Thailand 20

COUNTRY PLASTIC MATERIAL FLOW [2018]

Summary of the results for all plastics in the country

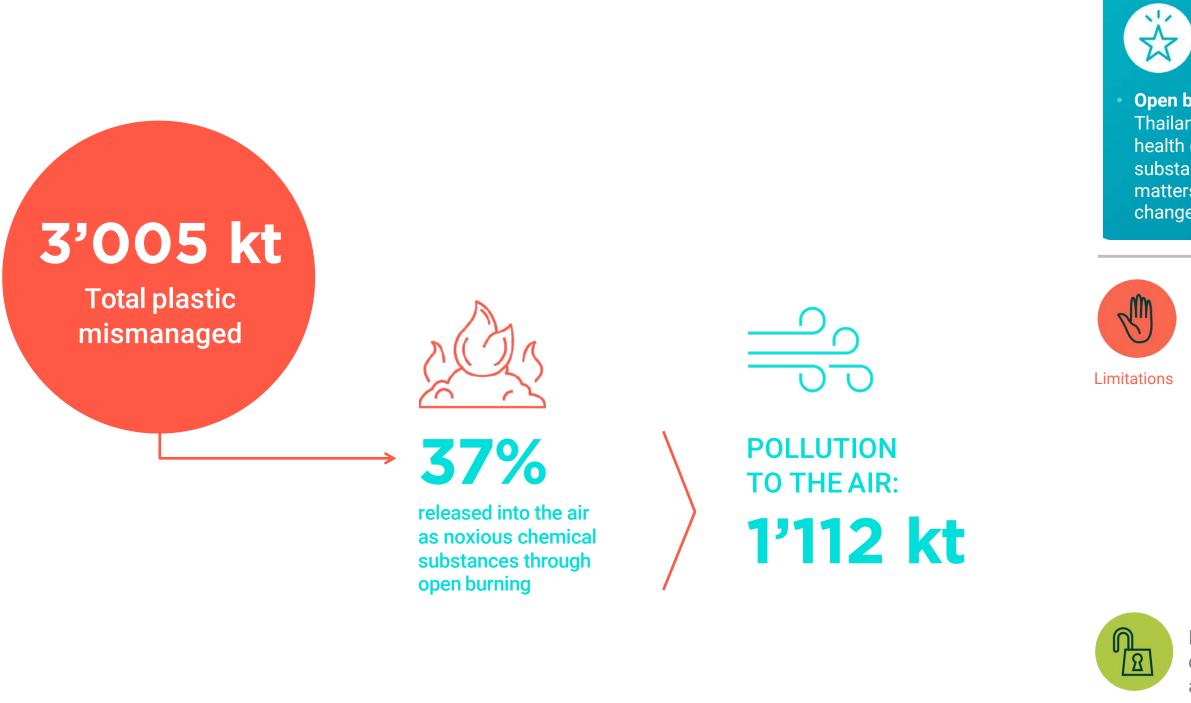


imported) in Thailand ends up being exported.

to the ocean every year. This is equivalent to a

MACRO-LEAKAGE VS MICRO-LEAKAGE [2018]

* The methodology used to calculate micro-plastics leakage is based on the Plastic Leak Project (2019)

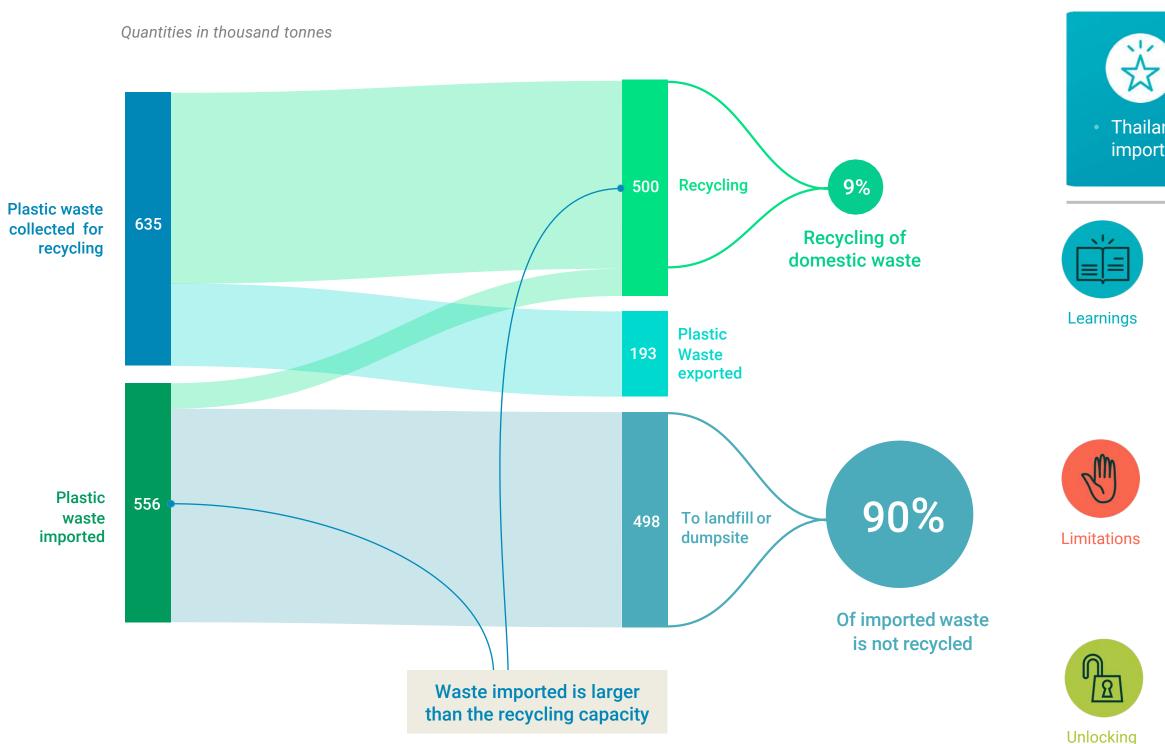


Key take-aways

 Micro-leakage contributes to 4% of the overall country leakage. This small contribution of micro-plastics is common for countries where the solid waste is still largely mismanaged.

While tyre dust is often the first cause of plastic primary microleakage in a country, it is unusual though for micro-leakage of primary pellets to rank second in absolute leakage (with microleakage of pellets coming from losses during production and transport process). This can be explained by the fact that Thailand and is a big plastic producer and exporter: it produces 4% of the total plastic worldwide, while its population accounts for less than 1% of the world population.

Unlocking limitations


Key take-aways

Open burning of mismanaged plastic waste in Thailand poses significant risks for human health (due to the release of noxious chemical substances such as dioxine and particulate matters) and directly contributes to climate change.

Although we do not have specific data on burning, we suggest a rough estimate of how much plastic could be polluting the air by using the assumptions made in the Breaking the Plastic Wave report (Lau et al, 2020): 60% of uncollected plastic waste and 13 % of plastic waste at dumpsites are burnt on average worldwide. In the case of Thailand, it would translate into having 37% of the total plastic mismanaged ending up polluting the air through open burning.

Investigate open burning practices and conduct field studies to estimate the amount of mismanaged plastic waste that is burned.

RECYCLING: IMPORT OF WASTE AND RECYCLING CAPACITY

Key take-aways

Thailand's recycling capacity is not sufficient to recycle both imported waste and domestic waste collected for recycling.

12% of the plastic waste generated in Thailand is collected for recycling. Of it, some is exported, but most is locally recycled (recycling rate: 9%). Since the total recycling capacity in the country is 500 kt (*PCD, 2018*), and 442 kt are used to recycle domestic plastic waste, most of the 556kt of plastic waste imported into Thailand in 2018 ended up in landfills or dumpsites.

Although improper disposal of imported plastic waste in Thailand is a known issue (*GAIA*, 2019), the drivers behind waste trade in Thailand remain unclear.

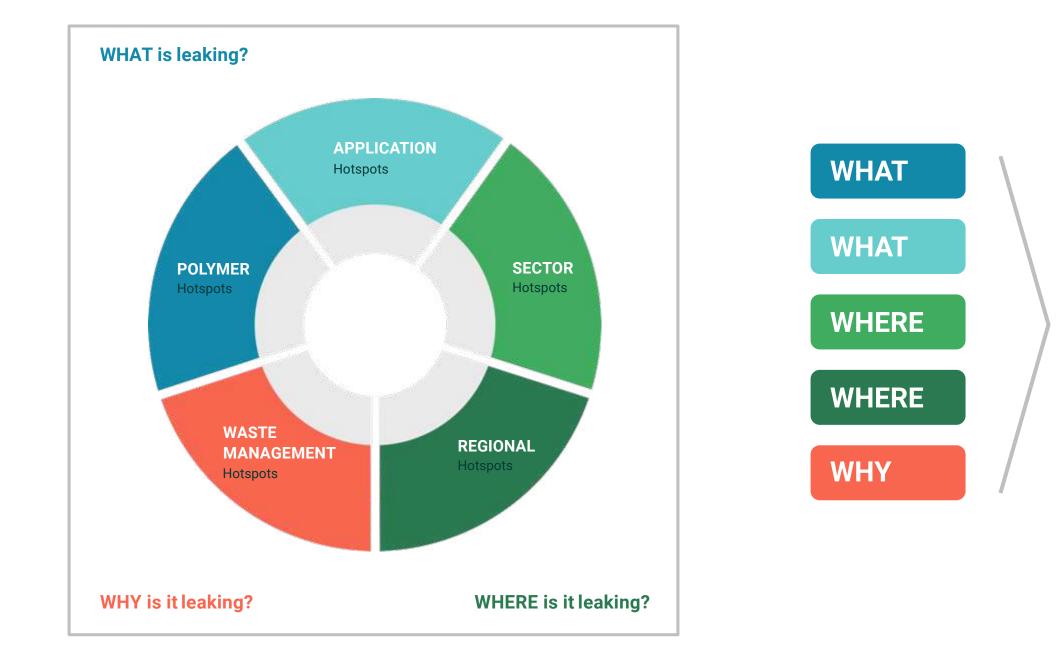
Furthermore, little information is available regarding the recycling capacity of the country, either in terms of polymers, companies or evolution throughout the years.

Put in place a reporting system for recycling companies in order to gain better insight onto the recycling sector. Investigate waste trade.

limitations

2.2 DETAILED HOTSPOTS RESULTS

ea + Quantis


4 Appendices

5 Bibliography

Plastic pollution hotspots: Thailand 25

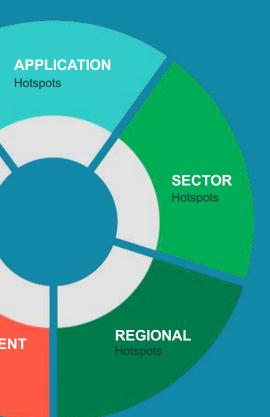
5 CATEGORIES OF HOTSPOTS

ACTIONABLE HOTSPOTS FORMULATION

ea + Quantis

POLYMER A HOTSPOTS

О

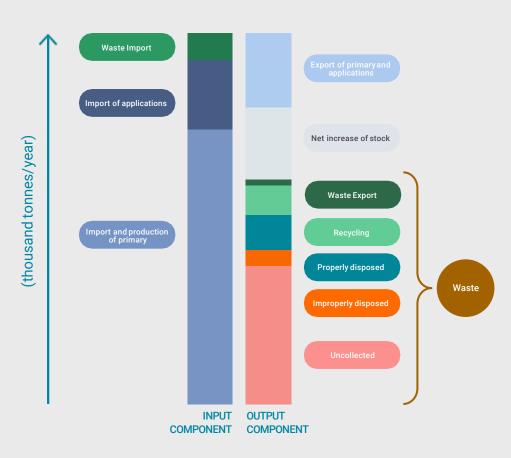

 \bigcirc

POLYMER Hotspots

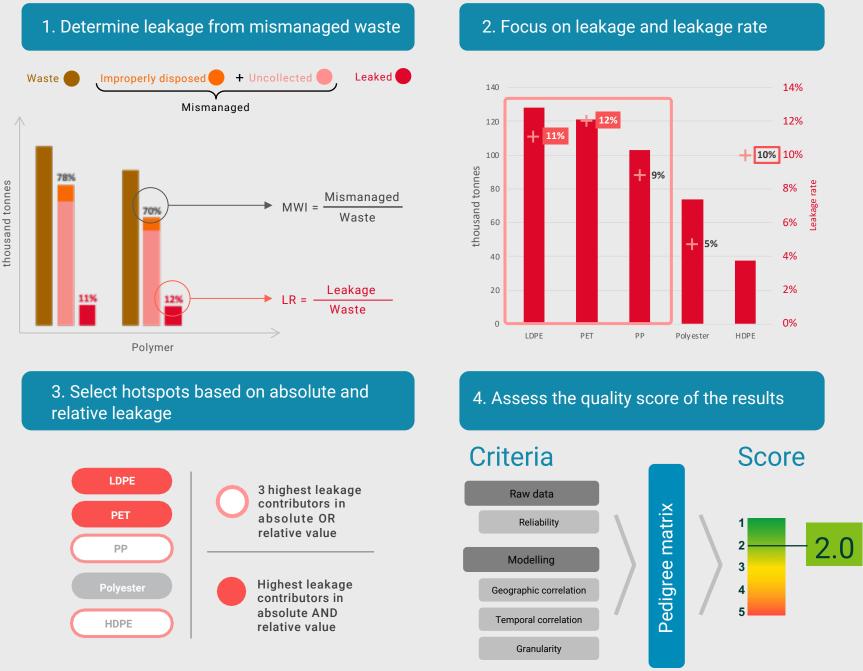
> WASTE MANAGEMENT **Hotspots**

4 Appendices

5 Bibliography



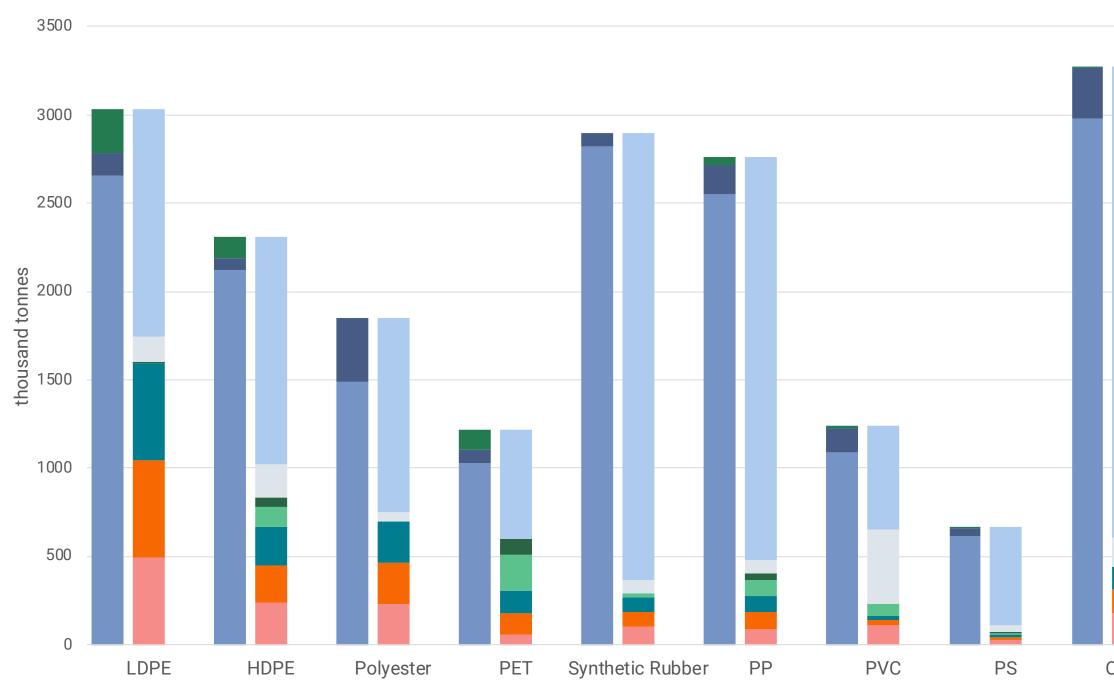
OBJECTIVE AND INSTRUCTIONS


Key question answered:

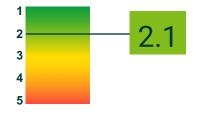
Which polymers are most critical in the country regarding plastic leakage?

What are the bar components of the polymer mass balance graph?

How to read the polymer hotspot graph?

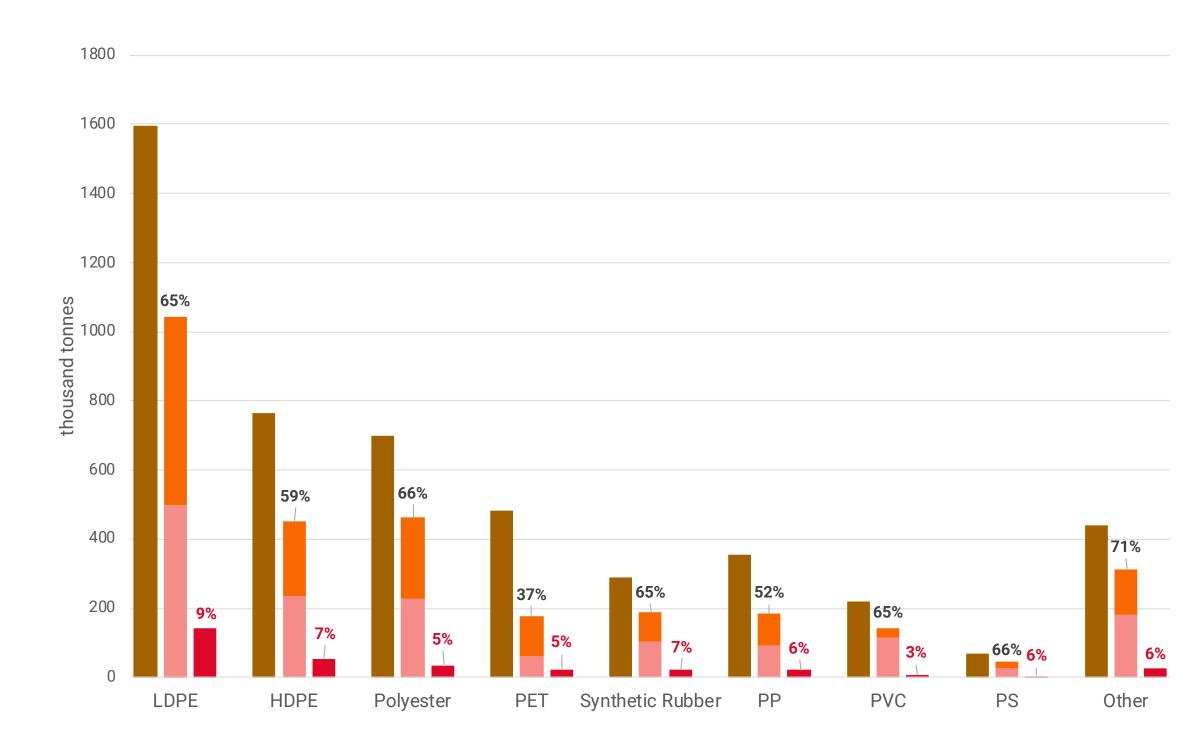


For more details, please read the Methodology

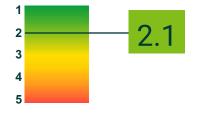


MASS BALANCE BY POLYMER [2018]

Quality Score

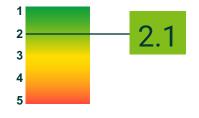


INPUT


Other

MISMANAGED WASTE AND LEAKAGE BY POLYMER [2018]


Quality Score


X% | Mismanaged Waste Index (MWI) X% | Leakage Rate (LR)

POLYMER HOTSPOTS [2018]

Quality Score

- **LDPE** is the top contributor in absolute leakage (144 kt), with a leakage rate of 9%.
- **HDPE** is the 2nd contributor to leakage (54 kt), with a leakage rate of 7%.
- **Polyester**, extensively used in textile, is the 3rd polymer by absolute leakage (34 kt).
- Synthetic Rubber is a hotspot due to its high relative leakage (7%).

POLYMER HOTSPOTS: INTERPRETATION AND LIMITATIONS

LDPE

LDPE is widely used in Thailand especially to make plastic bags, which in some places constitute more than 60% of all plastics found at landfills/dumpsites (*Pasukphun, 2019*). There is very little recycling of LDPE in Thailand (*WWF, 2020*) 6kt. One explanation could be that Informal collectors are reluctant to transport plastic bags as these are light and voluminous items. Large amounts of waste generated and lack of recycling, combined with its use in light packaging application (with a high release rate), make LDPE the top hotspot for plastic leakage in Thailand.

Polyester

Polyester is the single most produced polymer in Thailand for the textile market. Around 700 kt of polyester fibres waste is generated in 2018, from which 66% is mismanaged. This is mainly due to an insufficient capacity of sanitary landfills causing more than 30% of the collected polyester fibres waste to be disposed at unsanitary landfills or dumpsites. Also, about 30% of this polyester fibres waste remains uncollected. Moreover, there is no recycling of polyester fibres in Thailand. As a result, 34 kt of polyester leaked into the oceans in 2018, making polyester a hotspot in absolute leakage.

Learnings

Synthetic Rubber used for tyres leaks to the environment because of waste mismanagement (macro-leakage: 11 kt), but also because of tyre abrasion (micro-leakage: 10 kt). The microplastics from tyre abrasion increase the total leakage and leads to a high leakage rate with respect to other polymers.

HDPE

Contrary to LDPE, HDPE is collected for recycling. The informal sector recycled 102 kt of HDPE in 2018 (in second position after PET with 178 kt). Nonetheless, because of it's frequent use in the packaging sector (higher chances of littering and leakage), HDPE is more likely than most other polymers to leak into waterways once it is mismanaged. Overall, HDPE ranks third by absolute leakage (54 kt) and has a relatively high leakage rate (7%), which makes it one of the main polymer hotspots in Thailand.

Synthetic Rubber

POLYMER HOTSPOTS: INTERPRETATION AND LIMITATIONS

All polymers

- Illegal import of waste may be an issue in Thailand, especially after the policy enforced by China in 2018 banning the import of most plastics and other materials. We could not assess the magnitude of the phenomenon.
- Although the total amount of waste legally imported is known thanks to Comtrade database (2020), the database lacks details on which type of polymer is imported. So we assumed that the polymer composition of imported waste matches that of the global market.
- The stock assessment by polymer, as well as the proper and improper management of waste, are derived from the sector analysis through a sector to polymer mapping. This mapping is based on the EU market (from *Plastics Europe*, 2018).

- Investigate illegal trade of waste.
- Improve tracking of waste trade by polymer type. This effort has to be performed at a global level.
- Having a sector to polymer mapping based on the Thailand market would improve the quality of the analysis.

Unlocking limitations

ea + Quantis

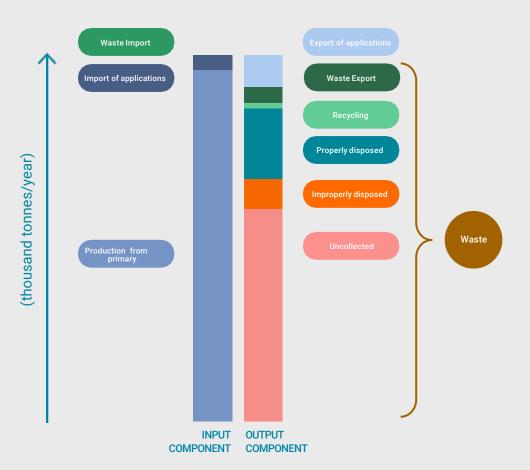
APPLICATION B HOTSPOTS

POLYMER Hotspots

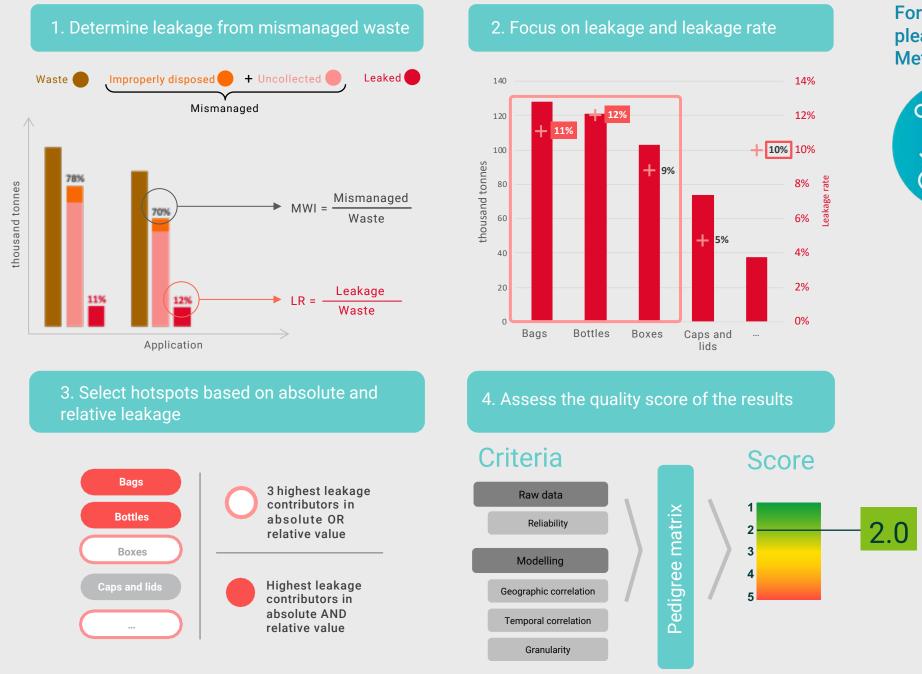
> WASTE MANAGEMENT Hotspots

4 Appendices

5 Bibliography



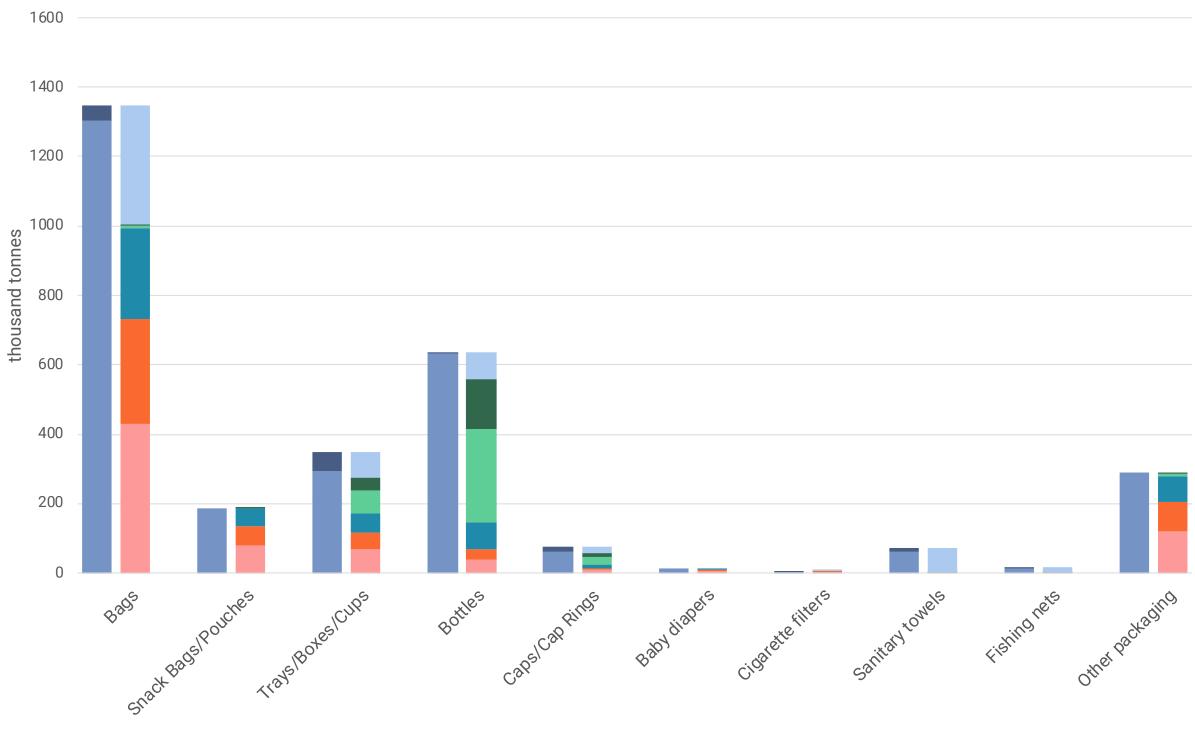
OBJECTIVE AND INSTRUCTIONS


Key question answered:

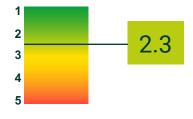
Which applications are most critical in the country regarding plastic leakage?

What are the bar components of the application mass balance graph?

How to read the application hotspot graph?

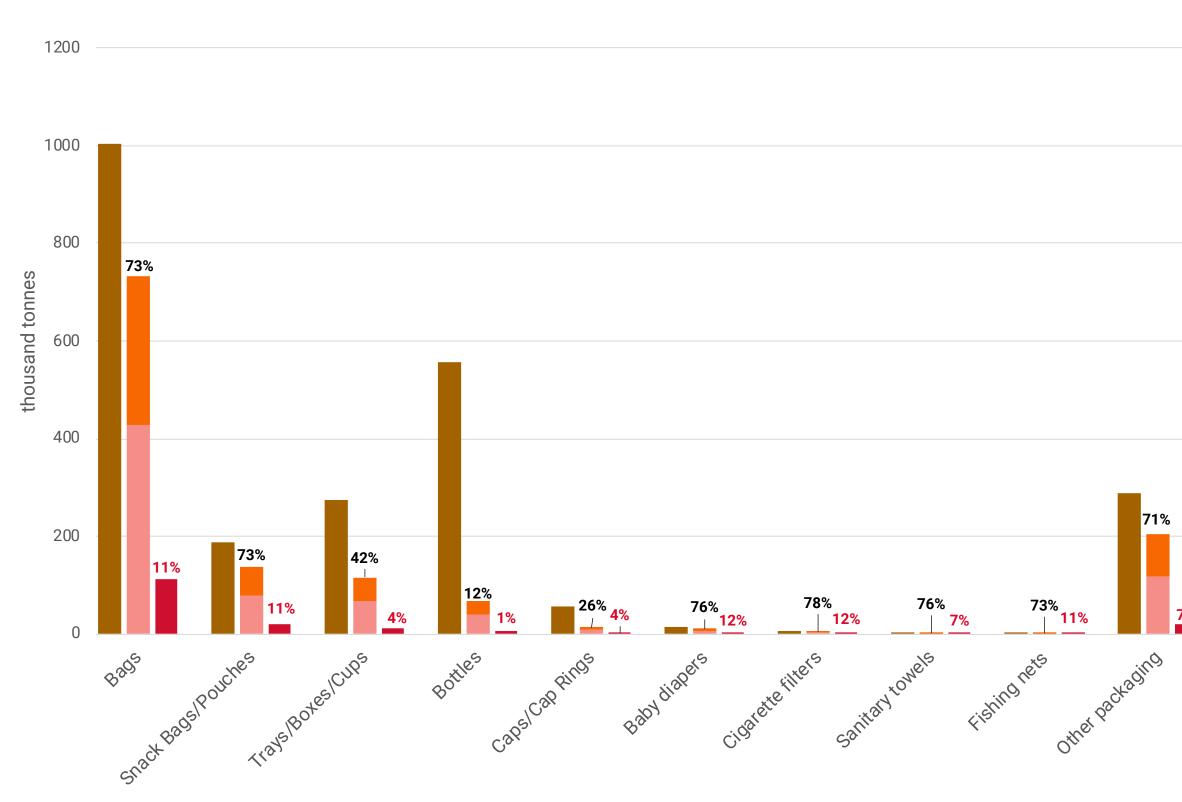

For more details, please read the Methodology

MASS BALANCE BY APPLICATION [2018]

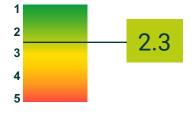


The application analysis covers most of known short-lived products, which corresponds to **52% of total plastic waste** generated in the country in 2018.

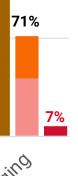
Quality Score



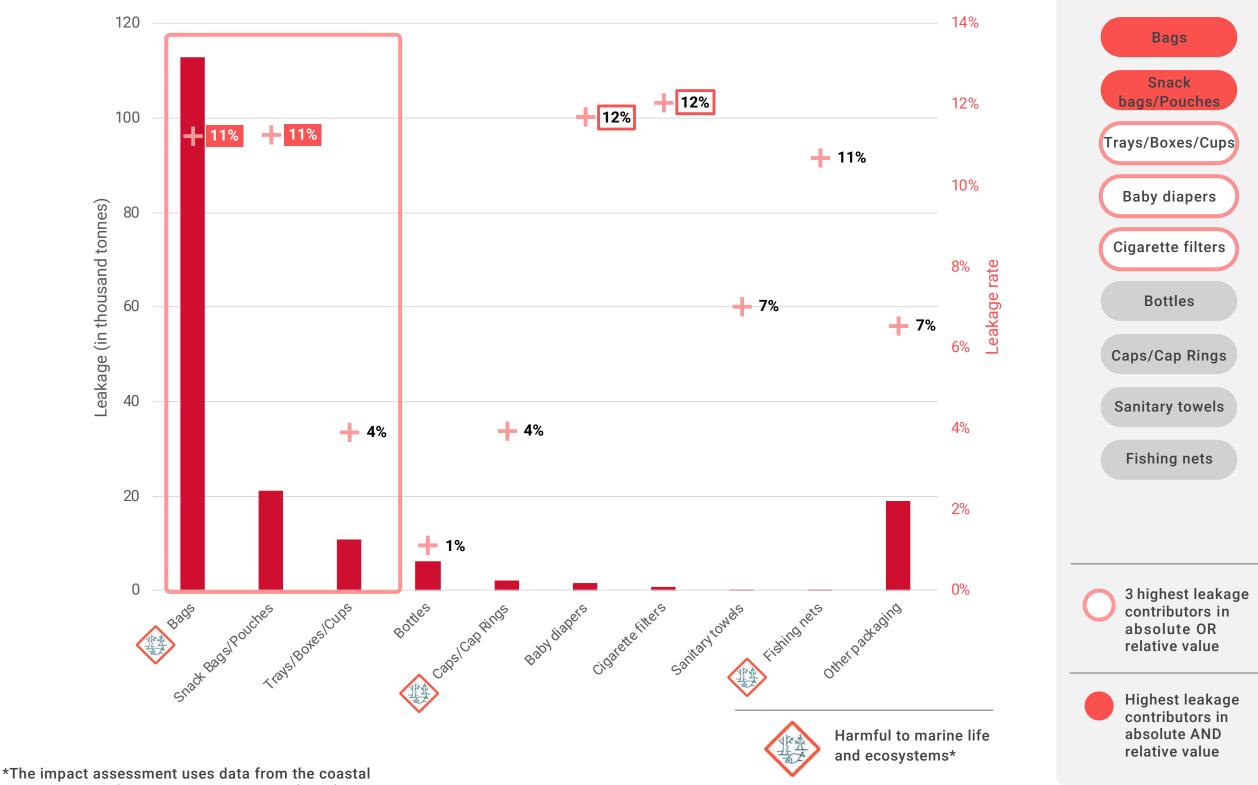
INPUT

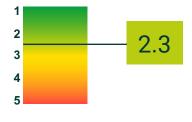


MISMANAGED WASTE AND LEAKAGE BY APPLICATION [2018]



Quality Score




APPLICATION HOTSPOTS [2018]

clean-up report from Ocean Conservancy (2019)

Quality Score

Key take-aways

- **Plastic bags** are by far the highest contributors in absolute leakage (113 kt) and rank 3nd in leakage rate (11%). They are highly harmful to marine life.
- Snack bags and pouches are the 2nd highest contributor in absolute leakage (21 kt) with a high leakage rate (11%). **Trays**, boxes and cups are 3rd in absolute leakage (11 kt).
- Although **baby diapers and** cigarette filters rank low in absolute leakage (respectively 2 kt and 1 kt), almost 1/10th of their waste generated tend to leak into the oceans.

APPLICATION HOTSPOTS: INTERPRETATION AND LIMITATIONS

Bags

One million tonnes of plastic bags were put on the Thai market in 2018 and went to waste. That is equivalent to 8 plastic bags being discarded by a single person every day. In 2018, recycling of plastic bags is limited to 7 kt, 260 kt are properly disposed and 733 kt are mismanaged (MWI 73%). As a result 113 kt of plastic bags leak to the ocean every year, making plastic bags the main application hotspot.

Bottles

Bottles are the second most common plastic packaging application on the market with more than 550 kt of bottles discarded every year, corresponding to approximately 50 billion bottles. According to WWF estimates (*WWF*, 2020) 70% of all the bottles going to waste are collected for recycling, from which a majority is domestically recycled and a remaining part is exported for recycling.

Snac pack be re

Snack bags and pouches are usually made of multi-layer packaging, mixing plastic with other materials, and cannot be recycled. For this reason even if "only" 186 kt were put on the market in 2018, 11% of it leaked into the ocean. The total leakage from snack bags and pouches amounts to 21 kt, ranking second by absolute leakage. Therefore, snack bags and pouches are one of the main hotspots in the country.

Baby diapers

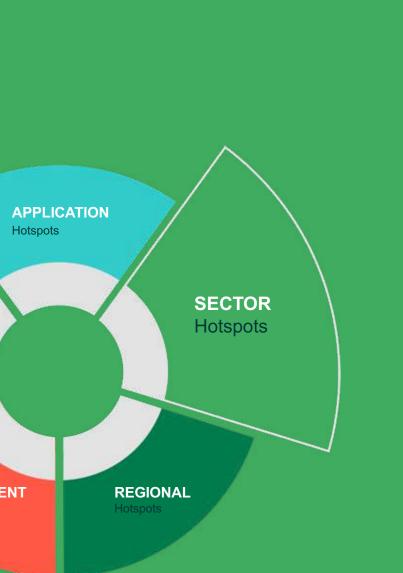
Learnings

Baby diapers are computed considering the 0-2 years old population of Thailand (*UN*, 2018) and an average consumption of 4.16 baby diapers a day (*Mendoza et al.*, 2015). The high leakage rate of 12% that makes baby diapers a hotspot for the country is mostly due to the high littering rate of 21%, estimated based on littering rates for sanitary towels in Europe (*European Commission*, 2018).

Perform in Thailand a data collection on the ground similar to that conducted by ICF and Eunomia in Europe (*European Commission, 2018*), in order to have a specific littering rate for baby diapers in Thailand.

Unlocking limitations

Snack bags and pouches

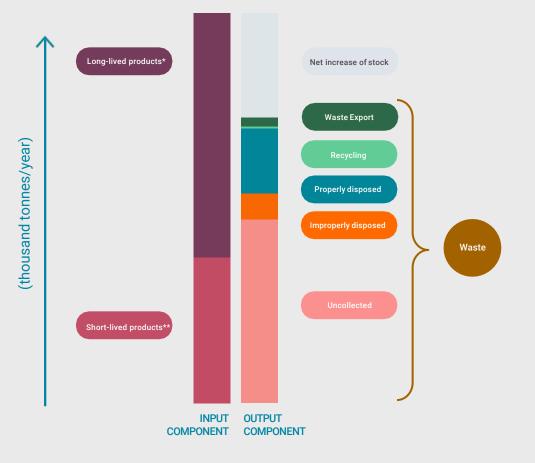


POLYMER Hotspots

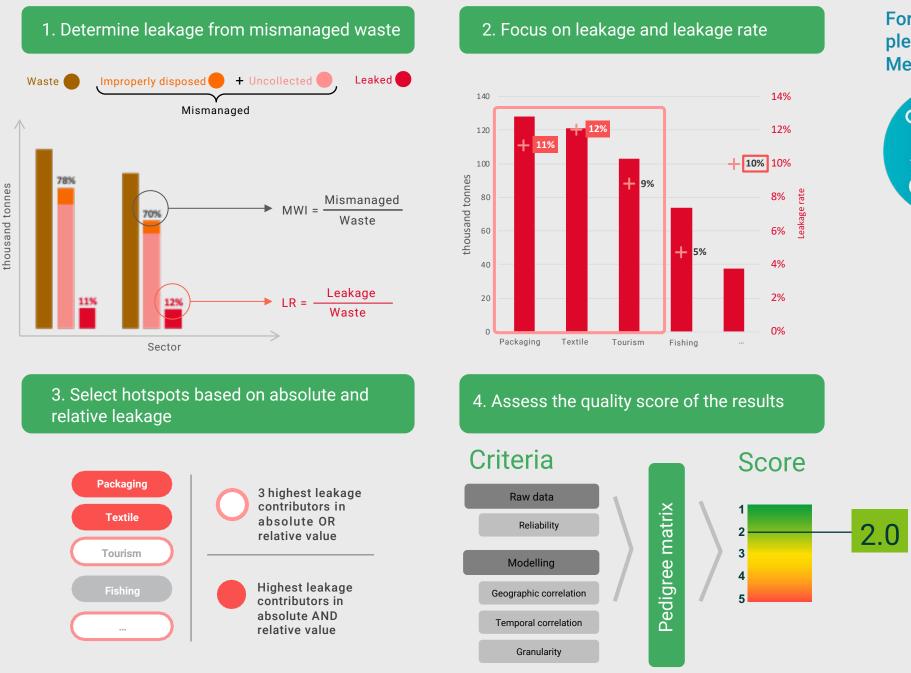
> WASTE MANAGEMENT Hotspots

4 Appendices

5 Bibliography



OBJECTIVE AND INSTRUCTIONS

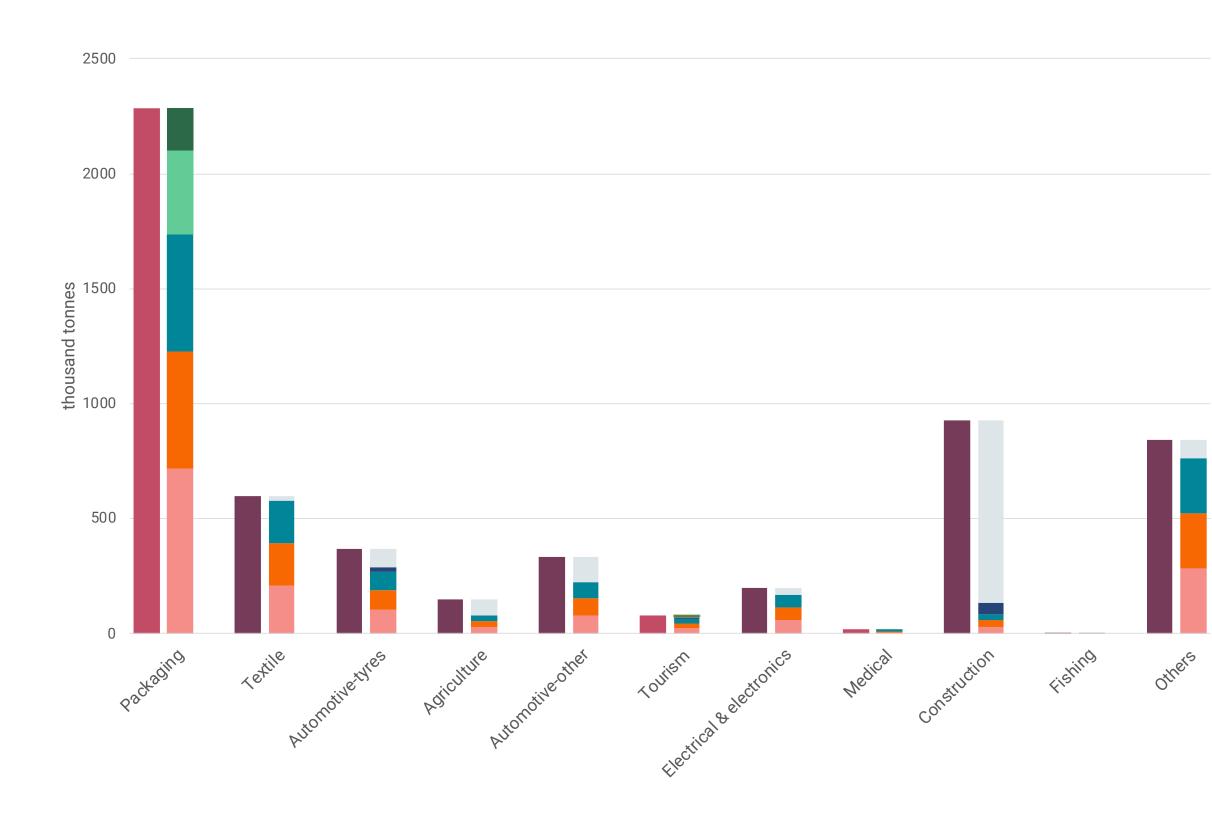

Key question answered:

Which sectors are most critical in the country regarding plastic leakage?

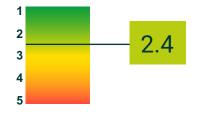
What are the bar components of the sector mass balance graph?

How to read the sector hotspot graph?

* Short-lived products: products that are disposed within the year of study (Life-time < 1 year)


** Long-lived products: products that are disposed after the year of study (Life-time > 1 year)

For more details, please read the Methodology



MASS BALANCE BY SECTOR [2018]

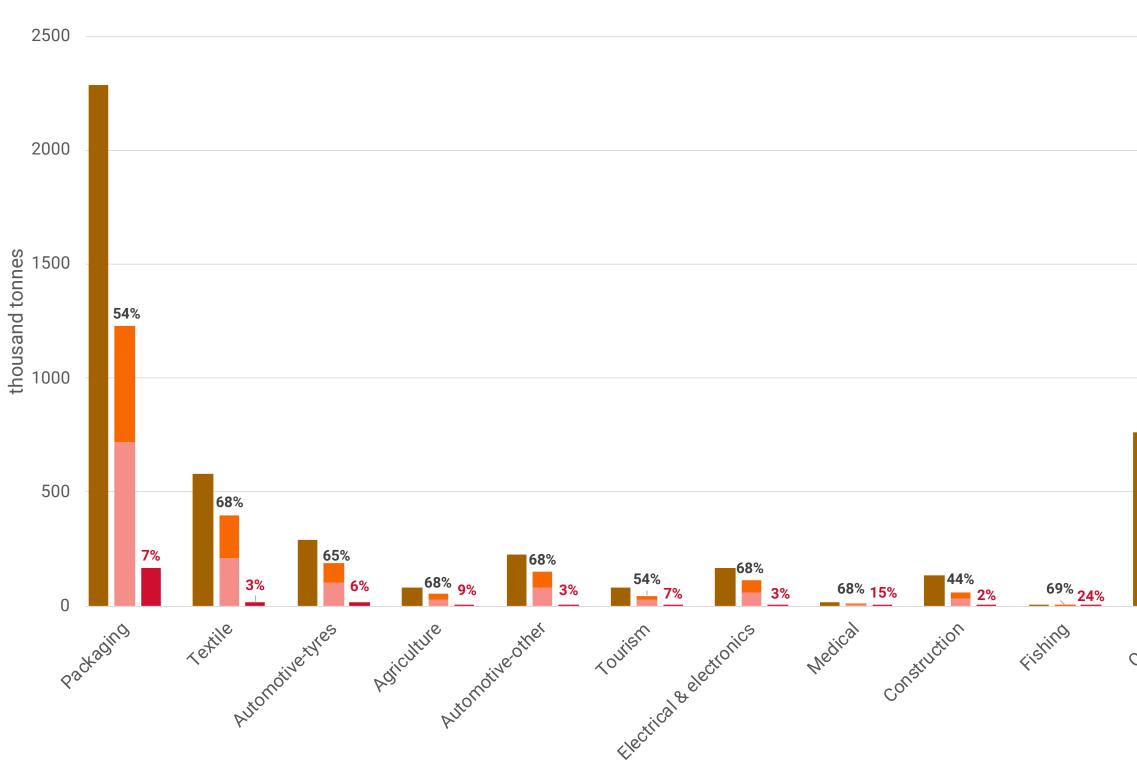
Quality Score

INPUT

OUTPUT

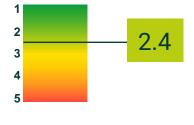
Waste Export

Export of primary and products

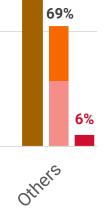

Recycling

Properly disposed

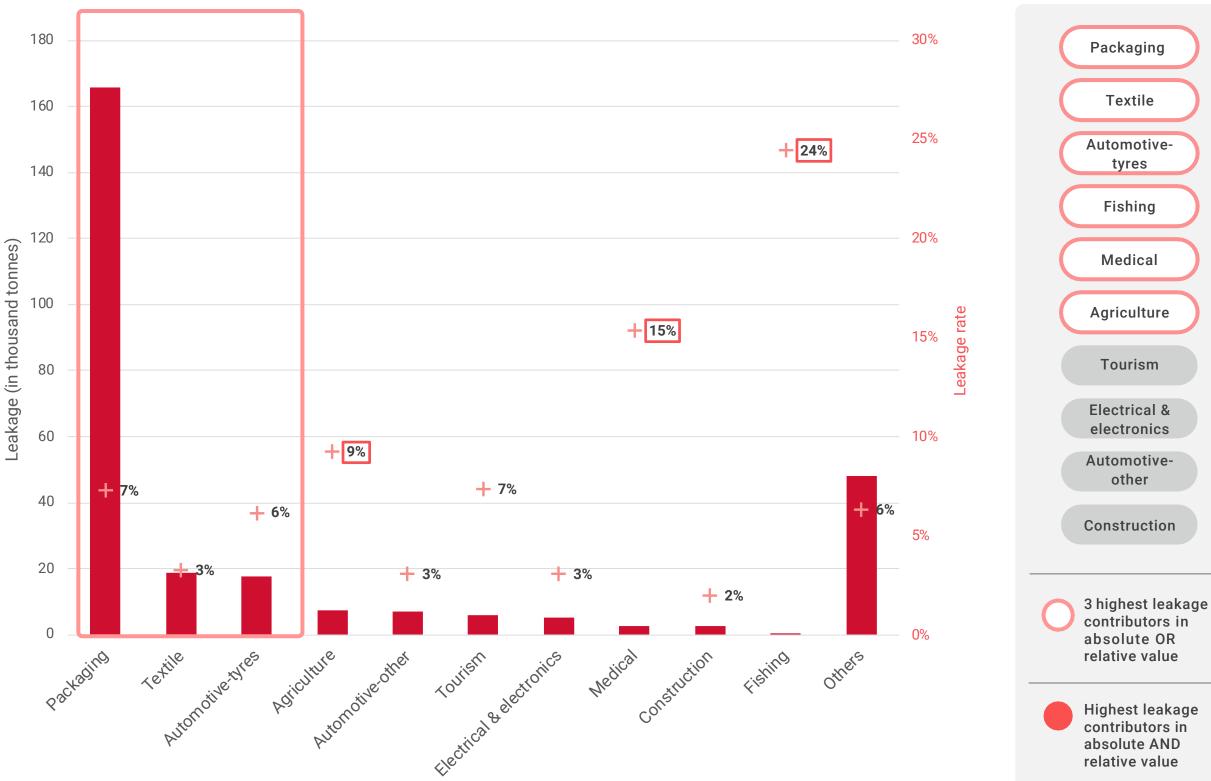
Improperly disposed

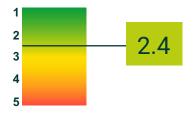

Uncollected

MISMANAGED WASTE AND LEAKAGE BY SECTOR [2018]



Quality Score





SECTOR HOTSPOTS [2018]

Quality Score

Key take-aways

- The packaging sector contributes to almost 60% of the total plastic leakage with 166 kt of packaging waste leaking into oceans and waterways.
- The textile sector is the 2nd highest contributor to plastic leakage in absolute value (19 kt).
- Fishing, medical and agriculture sectors have a relatively low contribution in absolute leakage but have very high leakage rates (respectively 24%, 15% and 9%).

SECTOR HOTSPOTS: INTERPRETATION AND LIMITATIONS

Packaging

The packaging sector is the first sector by absolute leakage, contributing to around 60% of the plastic leakage in the country. Some aspects drive the leakage and some reduce it. One of the drivers is the high plastic consumption by the packaging sector, the highest of all sectors. This is in part counter-balanced by the fact that most of the recycled plastic comes from the packaging sector, resulting in the collection of 69% of the plastic coming from packaging. The high recycling rate of packaging waste results in in a MWI of 54%, lower than the overall average of 63% for all sectors. When looking at the amount of mismanaged waste by sector, packaging falls behind the textile sector which has the highest mismanaged rate. However, 1.2 Mt of plastic packaging is mismanaged, and the release rate of packaging applications to the environment is increased by their relatively small size (RR 16% compared to 10% country average RR).

Construction

Even though construction has the second highest plastic input, more plastic goes to stock (building construction) than to waste (buildings demolition). Hence, plastic waste from the construction sector is not a hotspot in our analysis.

Textile

The amount of plastic put on the market by the textile sector is around 600 kt. Since the capacity of sanitary landfill and incinerators is limited and plastic fibres in textiles are not recycled, textile is the first sector by relative mismanaged plastic waste with a 68% mismanaged rate. Nonetheless, because of their size, mismanaged textile applications are less likely to end up in waterways compared to packaging applications, thus leading to a lower final leakage than the packaging sector. Overall, in 2018, approximately 19 kt of plastic in the form of textile fibres leaked to the ocean.

Applications from the textile sector are on average long-lived (they last more than one year). Here we considered an average life-time of two years (*The heightec Group Ltd*, 2012), which means that the textile that went to waste in 2018 was put on the market in 2016. By looking at the manufacturing GDP growth, we estimated the input of plastic in the textile sector in 2016 to be only slightly smaller than in 2018, which results in a small increase in stock. It is possible though that textile applications have a longer lifetime in Thailand.

Collect more accurate data on average life-time of textile application in Thailand and of amount of plastic used in textile in earlier years.

Unlocking limitations

SECTOR HOTSPOTS: INTERPRETATION AND LIMITATIONS

Fishing

Learning

Although low in absolute value, the fishing sector has the highest relative leakage due to the widespread practice by fishermen of throwing waste overboard. Around 50% of the leakage from fisheries comes from littering of plastic packaging overboard. Loss of fishing gears and improper disposal of fishing gears on land contribute to the remaining 50%.

Tourism

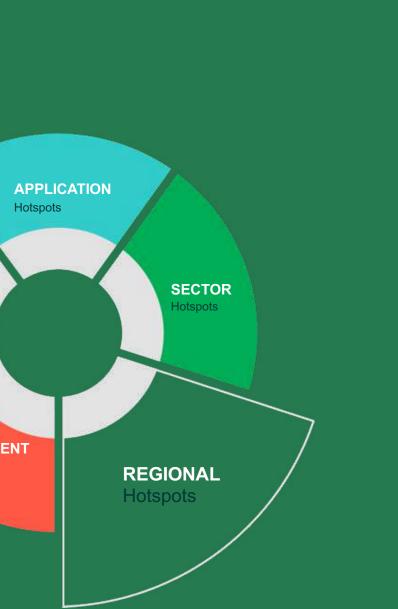
We consider the daily plastic consumption of a tourist to match the daily plastic packaging consumption of a local citizen.

leakage.

Medical

The high relative leakage is most likely not accurate, as we do not assume that there is a special treatment of medical waste, as should be the case in most countries, with the majority of the medical waste being incinerated. We assume instead that medical waste is managed as normal waste, and since it is contaminated it has low value for recyclers. In reality, we witness some recycling of used syringes in informal villages in Thailand. We are nonetheless confident that plastic medical waste is orders of magnitude lower than packaging plastic waste, thus less critical for what concerns plastic leakage.

Medical waste has a high relative leakage but a low absolute

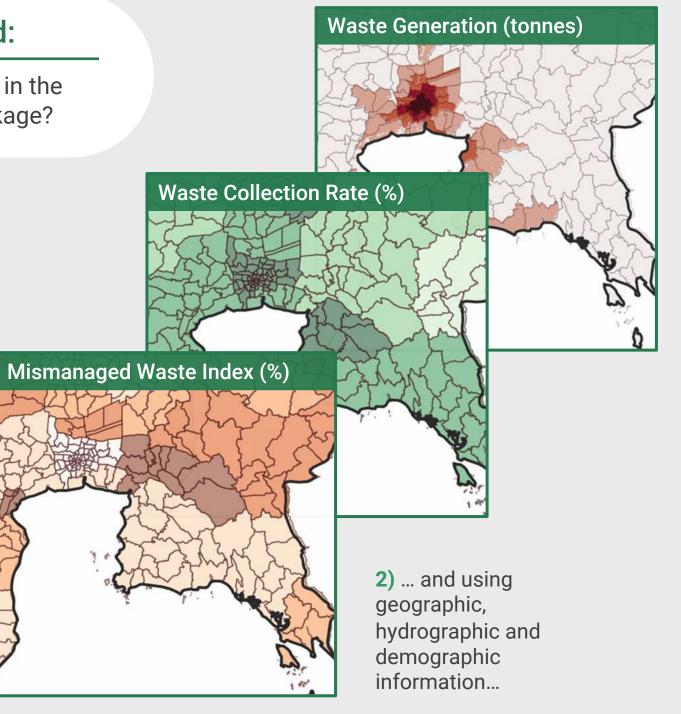


POLYMER Hotspots

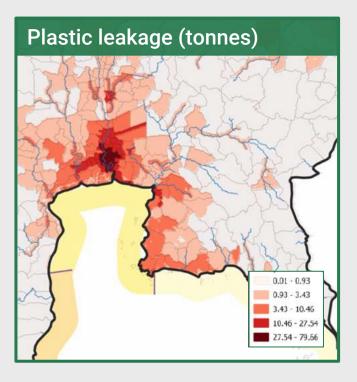
> WASTE MANAGEMENT Hotspots

4 Appendices

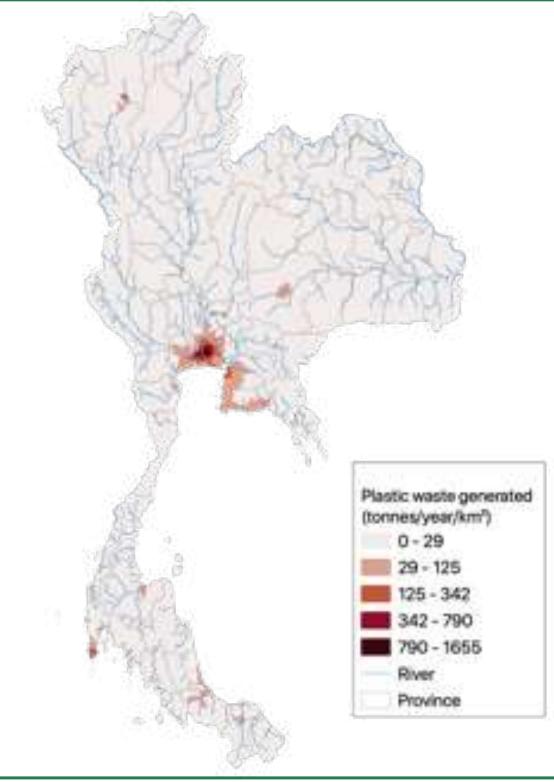
5 Bibliography



OBJECTIVE AND INSTRUCTIONS


Which areas are most critical in the country regarding plastic leakage?

 Overlaying different information available at city / district / subdistrict level and/of modelled through archetypes...



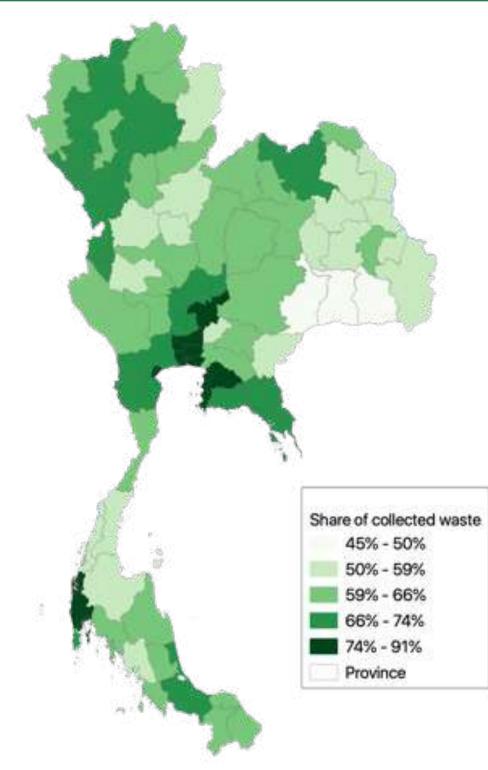
3) ... allows to compute a leakage map and identify regional hotspots

WASTE GENERATION: MAP AND INTERPRETATIONS

- the leakage.

Unlocking limitations

Key take-aways

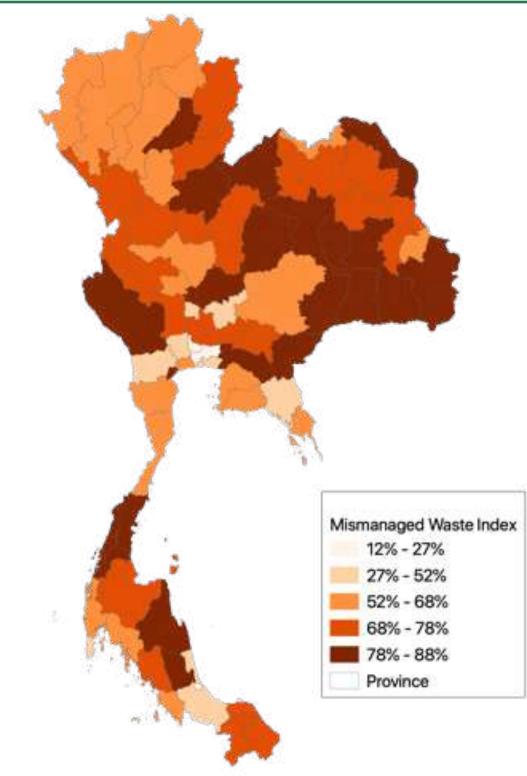

Plastic waste generation is concentrated around Bangkok, Chon Buri, Rayong, Chiang Mai and Pukhet areas, where the population density is higher.

• All of the areas with the highest waste generation are close to the coast or crossed by rivers, which favours

> The waste generation estimates displayed on the map are based on population points and do not account for the locations of specific industries and businesses (such as hotels) nor touristic areas.

For the areas with the highest generation a more in depth study could be conducted to better understand where waste is disposed: touristic areas, restaurants, hotels etc.

WASTE COLLECTION: MAP AND INTERPRETATIONS

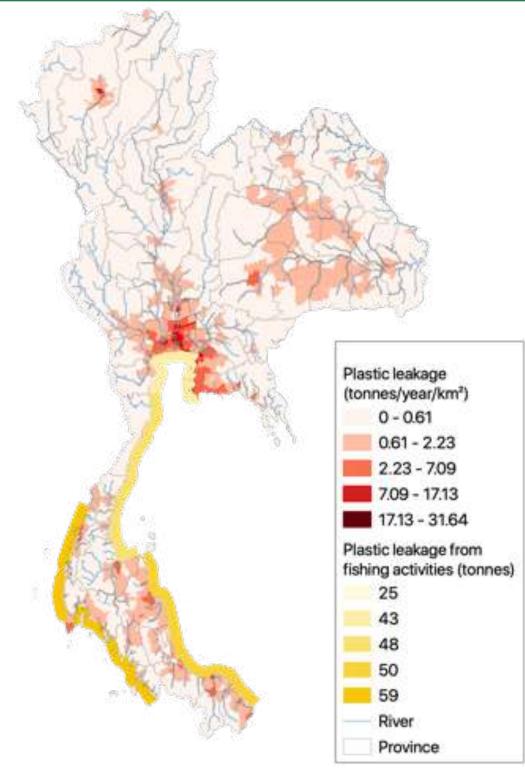

Key take-aways

• Waste collection is above 46% in all provinces, with an average of 70%.

• Bangkok Metropolis has a collection rate of 91%.

In Thailand, waste collection rates range from 46% to 91%. The provinces with the highest collection rates are: Bangkok Metropolis, Saraburi and Nonthaburi. The provinces with the lowest collection rates are: Buri Ram, Si Sa Ket and Surin. Collected waste is then either recycled, properly disposed or improperly disposed.

MISMANAGED WASTE INDEX: MAP AND INTERPRETATIONS


Key take-aways

• MWI is the lowest in Bangkok Metropolis (12%)

• The average MWI in Thailand is 59%

- In Bangkok Metropolis, the mismanaged waste comes mostly from uncollected waste, as 96% of the waste collected is either properly managed or sent to recycling.
- Some areas, like Chon Buri, have both • high MWI and collection rate. This is due to the fact that the collected waste is often disposed at unsanitary landills or dumpsites, therefore considered as mismanaged.

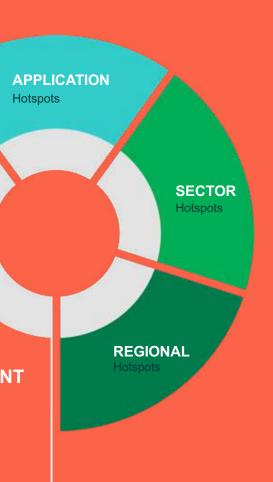
REGIONAL LEAKAGE: MAP AND INTERPRETATIONS

Key take-aways

• Annual leakage of mismanaged waste: 321'853 tonnes

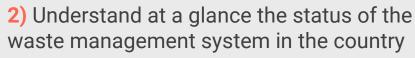
• Annual leakage from mismanaged/lost at sea fishing gears and from overboard litter: 225 tonnes

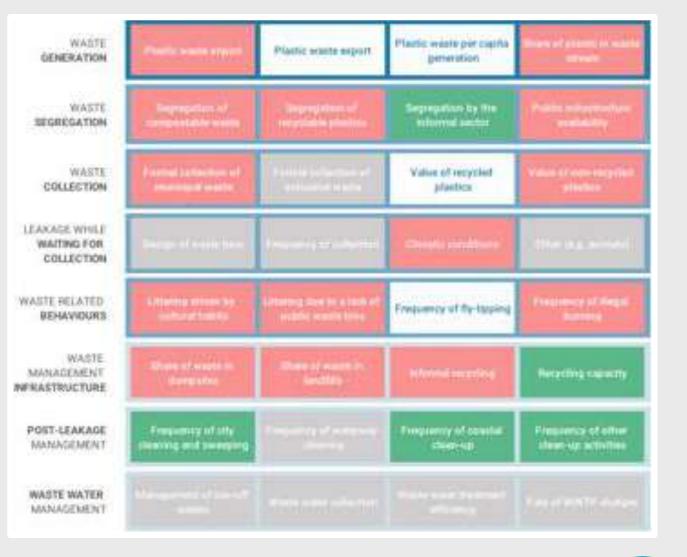
> Several parameters drive the leakage across Thailand:


- Populated areas with high waste generation are usually located close to a waterway or the coast. From any place in Thailand, it is possible to find a river or a coast within a 70 km radius. This increases the possibility of wastetransfer to the marine environment.
- Large quantities of waste are mismanaged due to low collection and/or disposal of waste at unsanitary landfills and dumpsites.
- High surface water runoff, especially in late summer/early autumn, drives leakage. In Thailand, 96% of the country is classified as either "high" or "average" runoff.

4 Appendices

5 Bibliography


OBJECTIVE AND INSTRUCTIONS


Key question answered:

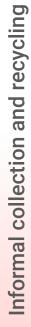
Which waste management stages are most critical in the country regarding plastic leakage?

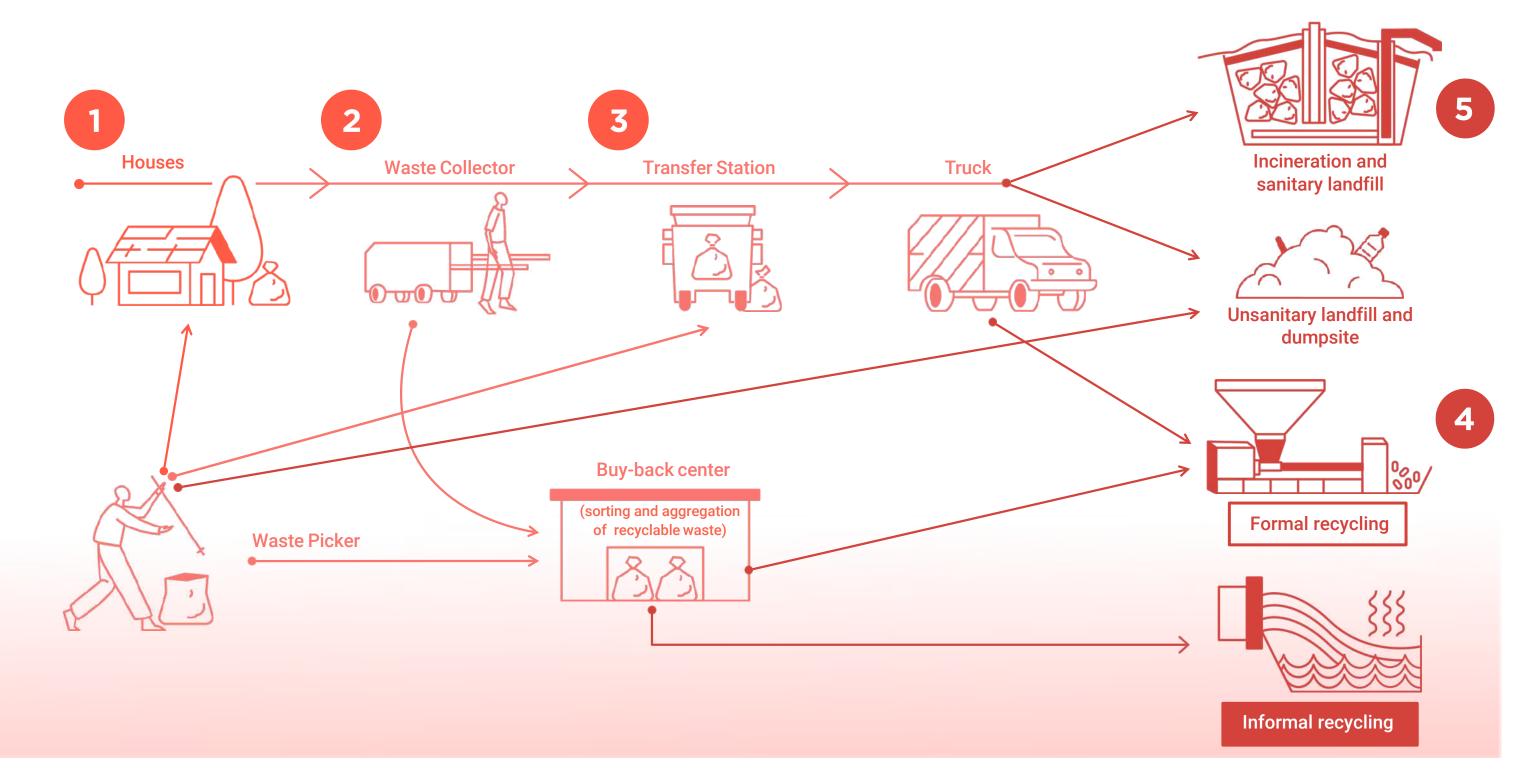
1) Decide for each element* of the waste management system if its contribution to leakage mitigation is positive (coolspot), neutral or negative (hotspot)

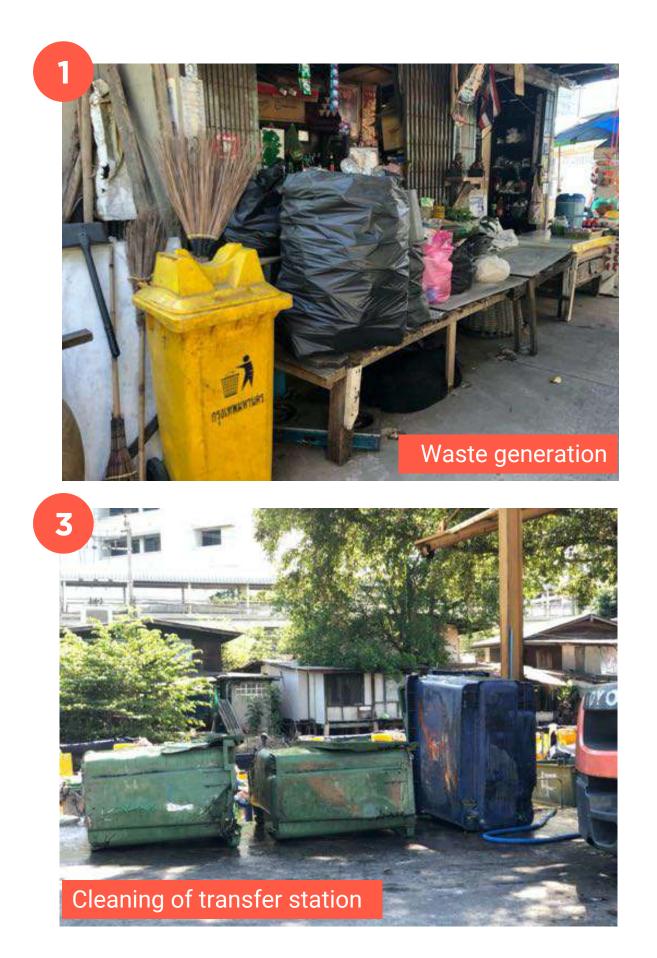
Waste management stage	Potential hotpsot	Is it a hotspot?	Justification	Source
Waste generation	Plastic waste import	Hatterar	Only 7% of the weate recycled in the country is locally sourced, the remaining 93% in imported. The formal sector only recycles imported weste (around 850kr a year) and it does not recycled domestic waste (it. VPA, VCC0, Domestic waste is recycled by the informal sector in improper conditions.	VPA Interview and VCCI report VN_r14
	Plastic waste export			
	Plastic waste per capita generation		Vietnam produces around 50 kg of plastic waste per person per year	EA - Country baseline analysis
	Share of plastic in waste stream	HOTSPOT	Vietnam is a LMC (8% of plastic in waste stream on average), but the share of plastic in the waters stream is from 15% to 20% depending on the source	VR_r50 GA Circular summarises the weste characterisation studies

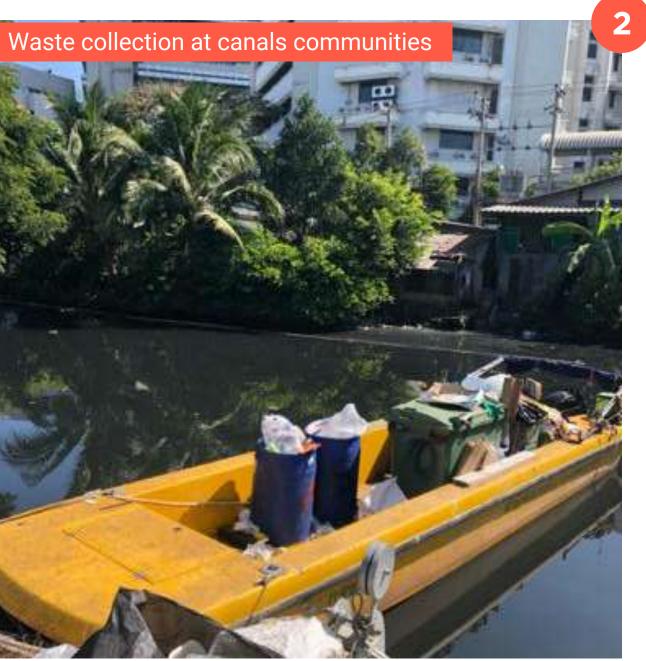
*For detailed element descriptions and methodology, refer to tool T4.1

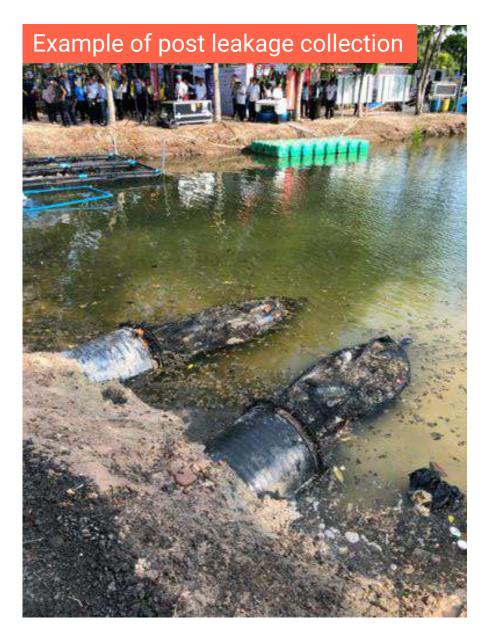
WASTE MANAGEMENT HOTSPOTS

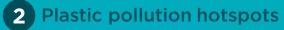

* Average plastic waste generation per capita values are derived from the What a Waste 2.0 database (Kaza et al., 2018)

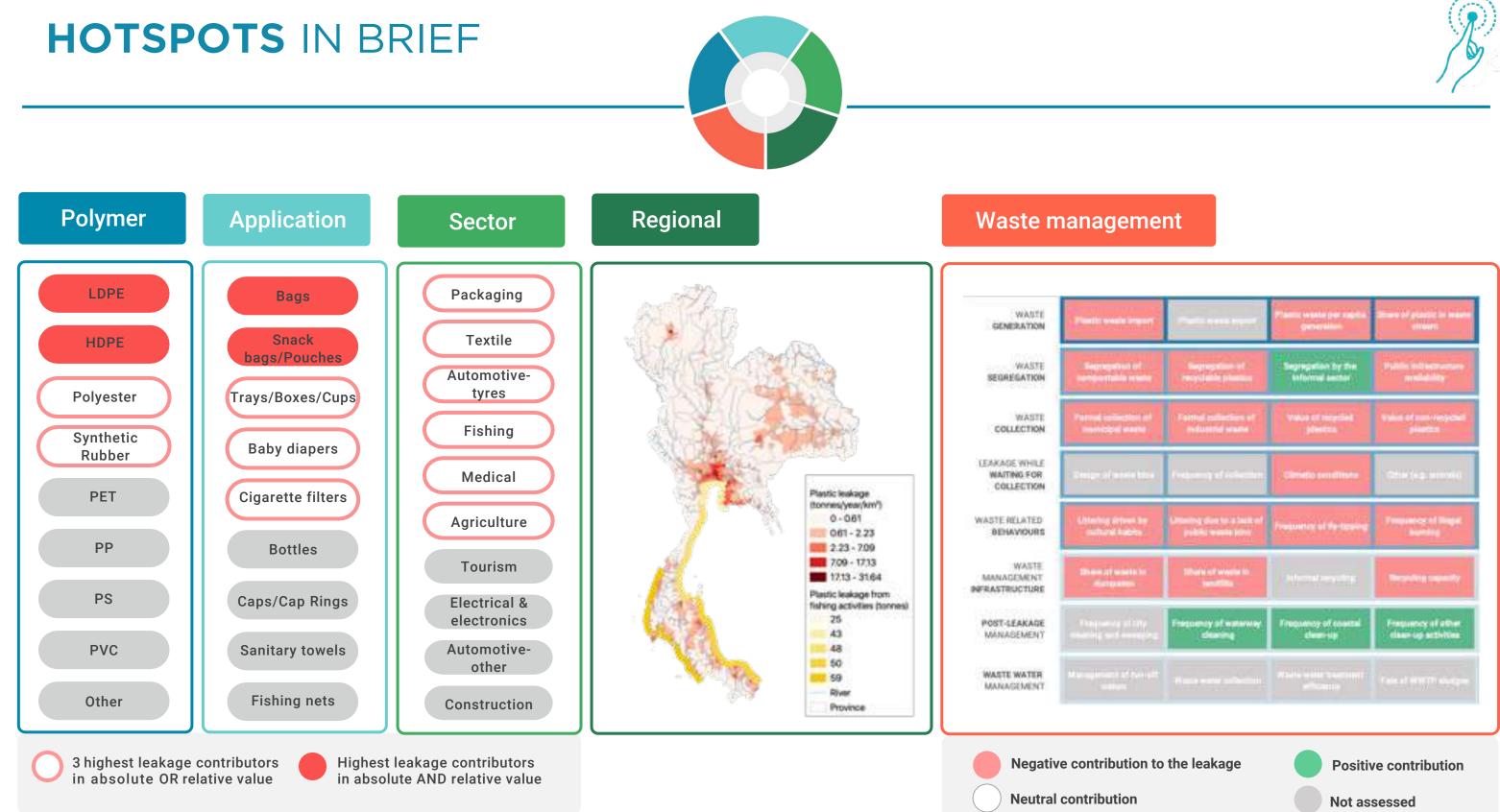



PLASTIC WASTE JOURNEY IN PICTURES





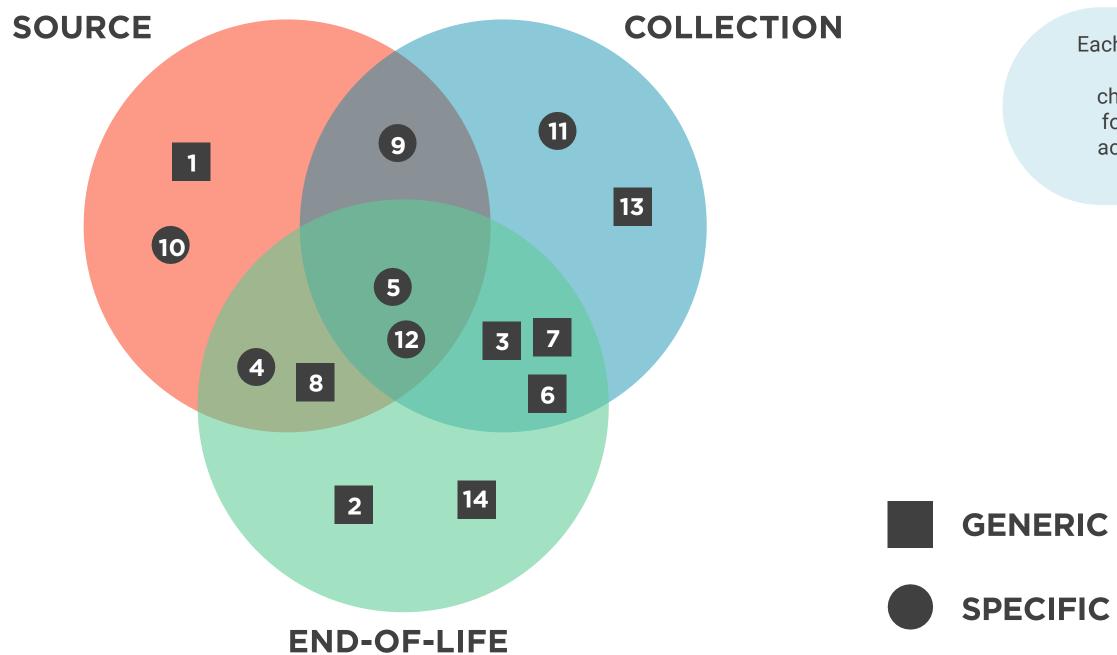




ACTIONABLE HOTSPOTS 2.3

4 Appendices

5 Bibliography


ACTIONABLE HOTSPOTS LIST

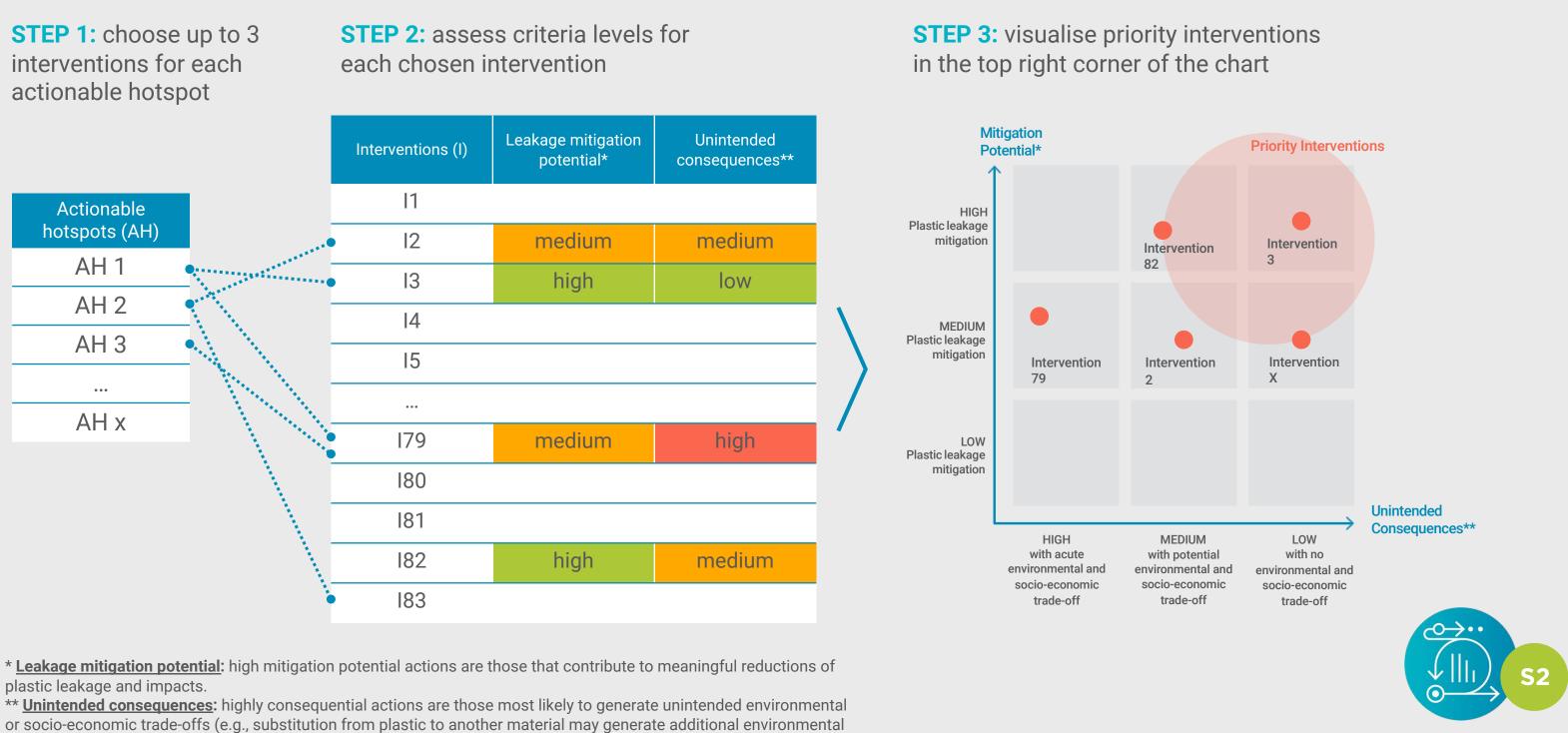
[#]	[ACTIONABLE HOTSPOT]	[∎/●]
1	The high plastic waste generation in Thailand (twice the world average) is a root cause of the country plastic leakage.	
2	Sanitary landfill and incinerators facilities treat only a third of the plastic waste generated, leaving the rest of the plastic waste susceptible to leakage.	
3	Plastic leaks in Thailand because of the diffuse practice of open burning of waste, especially outside urban areas, which reduces the amount of plastic available for recycling.	
4	LDPE leaks in Thailand because it is the most used polymer by the packaging sector and it is not recycled.	
5	Plastic bags leak in Thailand because they are the most consumed plastic item and they are not likely to be collected for recycling by the informal sector due to their low per item value	
6	The lack of waste segregation at source reduces the chances of plastic being collected for recycling and increases plastic leakage in Thailand.	
7	Plastic leaks in Thailand due to frequent flooding, high surface water runoff (especially during monsoon season), and proximity to waterways	
8	Import of waste in Thailand exceeds the country recycling capacity and it is eventually disposed in landfills and dumpsites, contributing to an increase of plastic leakage.	
9	Plastic from the packaging sector leaks in Thailand due to high consumption, littering and release rate.	
10	Polyester leaks to waterways because it is extensively used by the textile sector, and has a high mismanagement rate once discarded.	
11	HDPE leaks in Thailand do to its use in packaging applications that have higher littering and release rate.	
12	Snack bags and pouches leak to waterways in Thailand because of high consumption, high littering and lack of recycling.	
13	Plastic leaks in Thailand due to a lack of waste collection and segregation infrastructure.	
14	Lack of economical incentives for plastic waste collection and recycling, keep recycling rates low (10%).	

ACTIONABLE HOTSPOTS CHARACTERISATION

Each actionable hotspot can address plastic pollution at one or multiple stages along the plastic value chain. We notice that the list of actionable hotspots for Thailand calls for a well-balanced set of actions across the value chain, yet with an emphasis on the end-of-life.

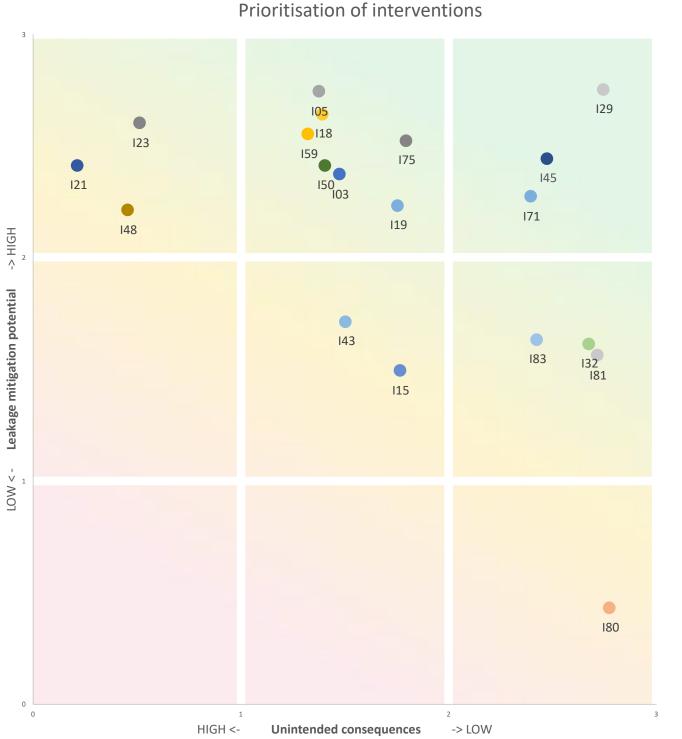
(Concerns all plastic types and all regions)

(Concerns specific plastic types or regions)



INTERVENTIONS 3.1

ea + Quantis


METHODOLOGY FOR IDENTIFYING INTERVENTIONS

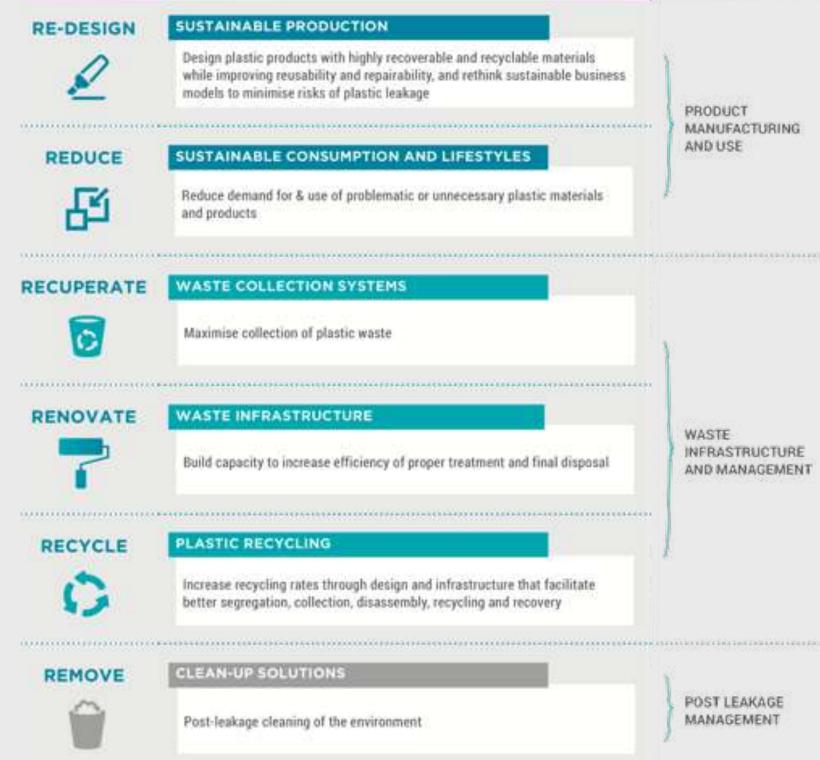
impacts such as GHG emissions).

PRELIMINARY SELECTION OF INTERVENTIONS

[•] I03: Increase recycling capacity for domestic plastic waste (all polymers)

- I05: Increase recycling capacity for domestic plastic waste (LDPE)
- I15: Reduce littering in rural areas
- I18: Reduce the demand for new synthetic fibres in textiles and recycle synthetic textiles back to raw materials
- I19: Reduce demand for, and use of, single-use, especially on-the-go, plastics
- I21: Increase demand for recycled material in the country (for all polymers)
- 123: Increase demand for recycled material in the country (LDPE)
- I29: Avoid producing / importing plastic objects that do not benefit from a recycling solution in the country
- I32: Reduce import and export of plastic waste
- I43: Reduce open burning of plastic waste
- I45: Plan more frequent waste collection prior to the rainy events
- I48: Increase plastic segregation at household level
- 150: Increase plastic segregation in businesses
- I59: Ensure plastic waste has a enough value to cover collection costs (for all polymers)
- I71: Increase capacity for proper waste disposal (sanitary landfills if other upstream solutions cannot be applied)
- 175: Reduce losses from non-sanitary landfills and dumpsites (from wind and floodings)
- I80: Increase density of waste bins in urban areas
- I81: Increase density of waste bins in rural areas
- 183: Increase density of waste bins in specific areas prone to leakage

Learning


Points are randomly distributed within the designated box to avoid overlapping. Each box on this 9 facets grid corresponds to a couple low/low or low/medium or low/high, etc. Only the facet in which the point falls into should be accounted for, not its relative position to points nearby.

The list of interventions results from the hotspot analysis; it is currently based on the authors perception. A final version of the interventions should be elaborated through a multi-stakeholder consultation process.

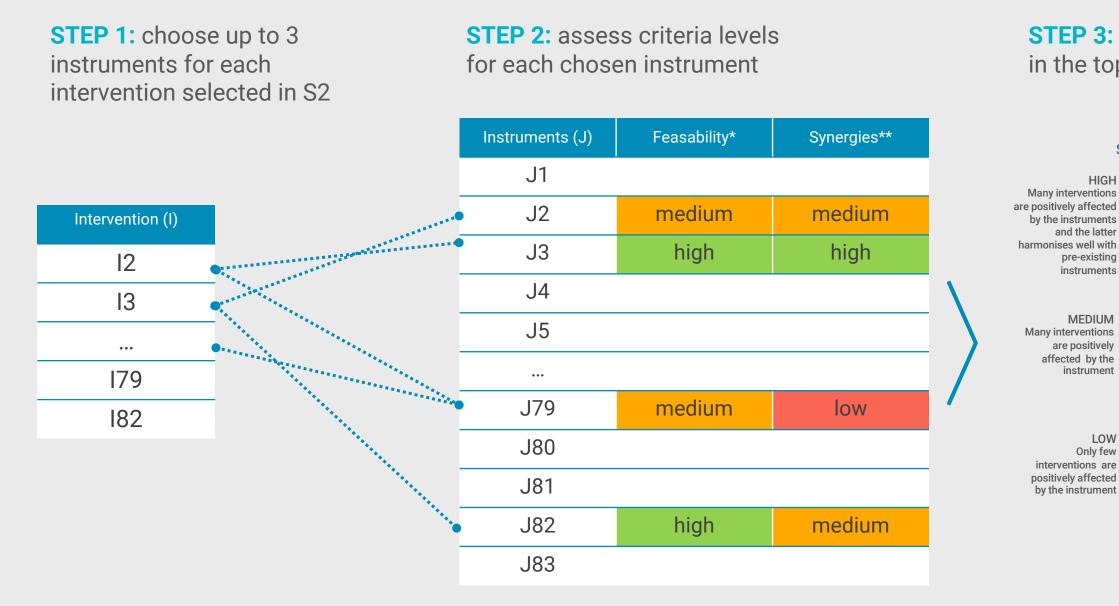
Set up a workshop for a multi-stakeholder process and repeat the interventions selection procedure.

INTERVENTIONS CLASSIFICATION

Interventions may occur at any point along the value chain. We categorise them into six types of approaches along the value chain.

PRELIMINARY PRIORITY INTERVENTIONS LIST

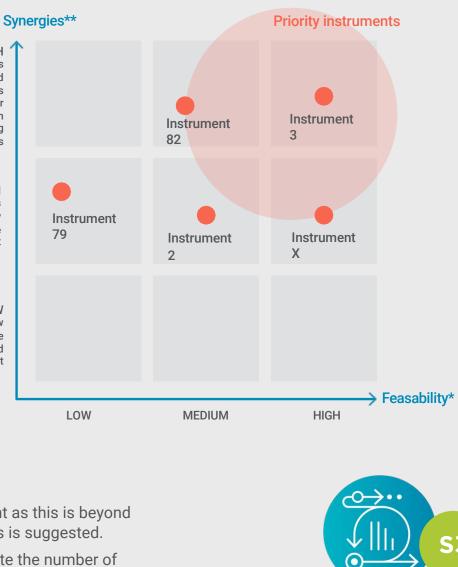
[INTERVENTION CLASS]	[PRIORITY INTERVENTION]	
SUSTAINABLE	Reduce import and export of plastic waste	132
PRODUCTION	Avoid producing or importing plastic objects that do not benefit from a recycling solution in the country	129
SUSTAINABLE CONSUMPTION	Reduce the demand for new synthetic fibres in textiles and recycle synthetic textiles back to raw materials	118
AND LIFESTYLES	Reduce demand for, and use of, single-use, especially on-the-go, plastics	119
	Plan more frequent waste collection prior to the rainy events	145
WASTE COLLECTION SYSTEMS	Increase plastic segregation in businesses	
	Ensure plastic waste has a enough value to cover collection costs (for all polymers)	159
	Increase capacity for proper waste disposal (sanitary landfills if other upstream solutions cannot be applied)	171
WASTE	Reduce losses from non-sanitary landfills and dumpsites (from wind and flooding)	
INFRASTRUCTURE	Increase density of waste bins in rural areas	181
	Increase density of waste bins in specific areas prone to leakage	183
PLASTIC RECYCLING	Increase recycling capacity for domestic plastic waste (all polymers)	103



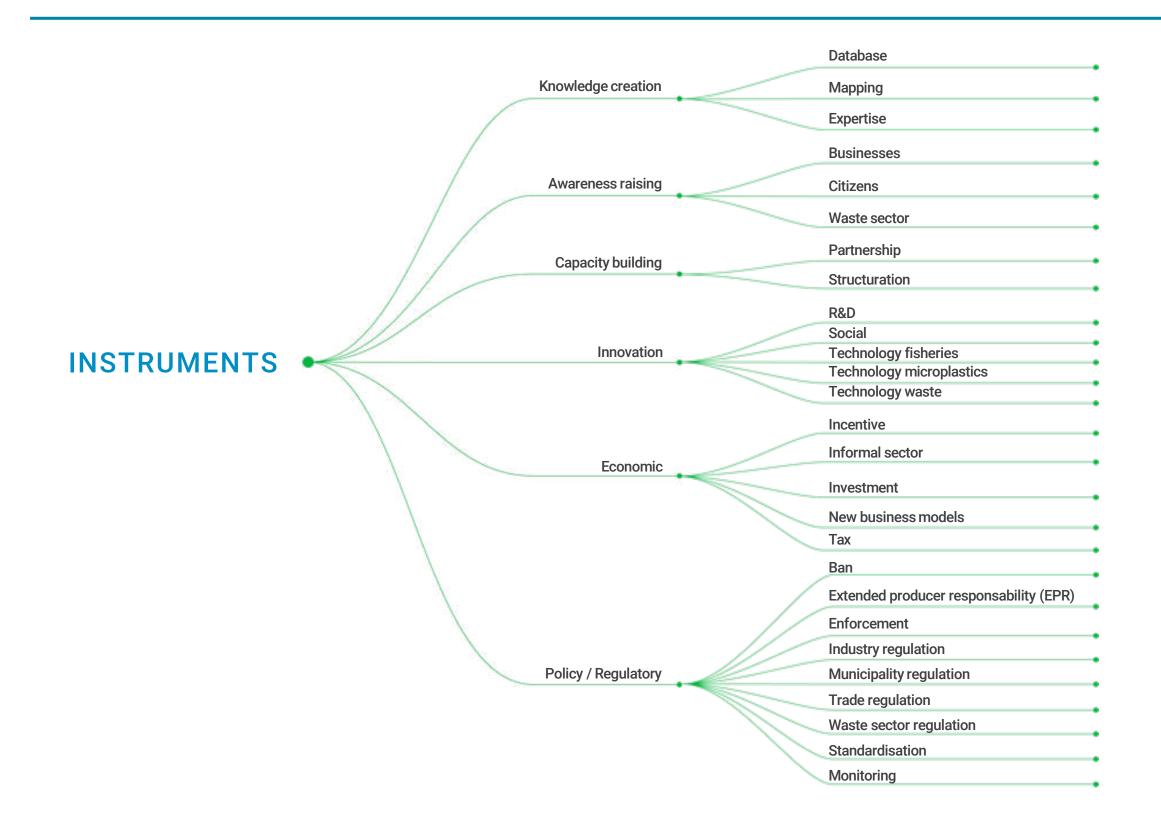
3.2 INSTRUMENTS

ea + Quantis

METHODOLOGY FOR IDENTIFYING INSTRUMENTS


* Feasability: technical and socio-economic assessment of each instrument should be performed. We do not assert a method to perform the assessment as this is beyond the scope of the Guidance. The user can decide on the method to use based on resources available. A by default qualitative assessment with three levels is suggested.

** Synergies: Some instruments may be beneficial to multiple interventions, thus creating a positive synergetic effect. This criterion does not only evaluate the number of suggested interventions benefitting from an instrument, but also assess if the proposed instrument harmonises well with instruments already in place.



STEP 3: visualise priority instruments in the top right corner of the chart

LIST OF POSSIBLE INSTRUMENT CATEGORIES

4.1 DATA REPOSITORY

ea + Quantis

DETAILED SHARES BY POLYMER

Polymer Type	Waste produced in the country (kt)	Domestic recycling of collected	Export of collected	Properly disposed	Improperly disposed	Uncollected	Tot	Collected	Mismanaged	Leaked	Waste produced and imported (kt)	Domestic recycling incl imported
РЕТ	485	37%	19%	17%	15%	13%	100%	87%	28%	4%	598	34%
РР	359	22%	11%	21%	21%	25%	100%	75%	46%	5%	405	22%
Polyester	698	0%	0%	34%	33%	33%	100%	67%	66%	5%	698	0%
LDPE	1355	0%	0%	32%	31%	37%	100%	63%	68%	9%	1598	0%
HDPE	708	14%	7%	22%	23%	33%	100%	67%	56%	7%	832	14%
PS	64	11%	6%	19%	21%	43%	100%	57%	64%	6%	72	11%
Other	432	0%	0%	28%	30%	42%	100%	58%	72%	6%	439	0%
Synthetic Rubber	289	6%	0%	29%	29%	36%	100%	64%	65%	7%	289	6%
PVC	216	25%	1%	9%	12%	53%	100%	47%	65%	3%	230	26%
All	4605	10%	4%	26%	26%	33%	100%	67%	60%	7%	5161	10%

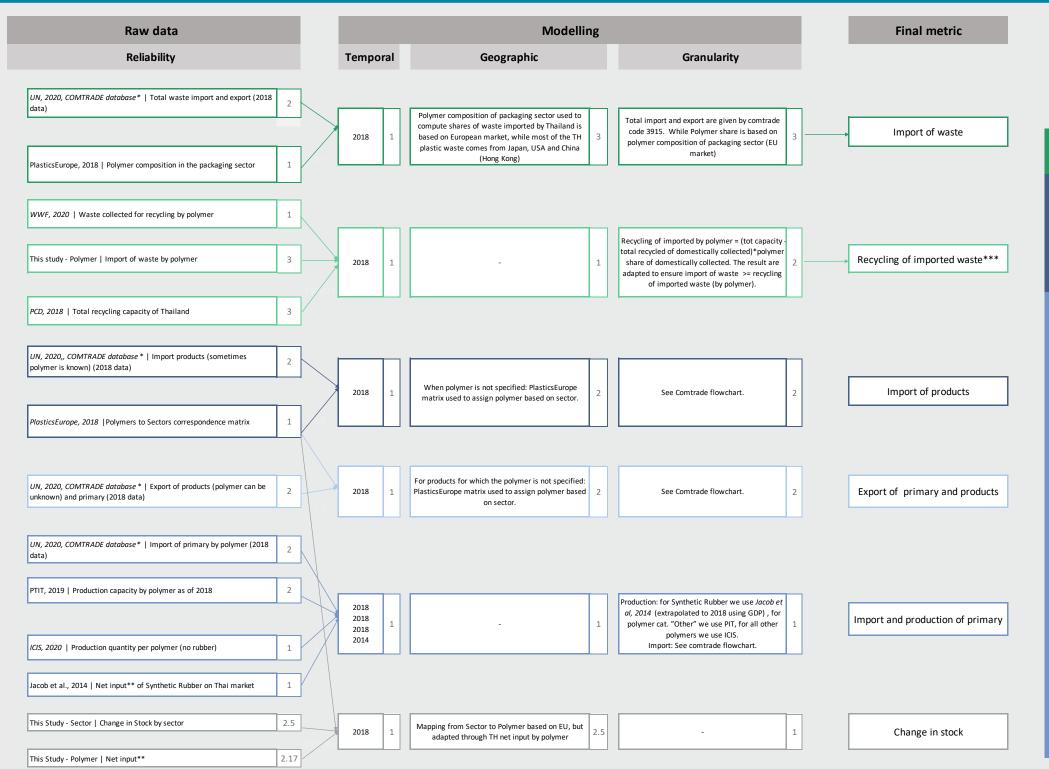
- Waste = Collected + Uncollected
- Collected = Domestic recycling of collected + Export of collected + Properly managed + Improperly managed
- **Mismanaged** = Improperly managed + Uncollected

WASTE MANAGEMENT BY PROVINCE (1/2)

	1										1	1				
Province EN	Province TH	Population 2020	Generated t	Collected t	Collected for recycling t	Properly disposed t	Improperly disposed t	Uncollected t	Mismanaged t	Leaked t	Generated kg/hab	Collected for recycling kg/hab	Mismanaged kg/hab	Share of collected	Share of mismanaged	Leakage rate
Amnat Charoen	้อานาจเจิรญ	225 157	18 876	10 586	2 247	3 843	4 496	8 290	12 786	1 339	84	10	57			7%
Ang Thong	้อางทอง	238 569	14 356	9 596	1 817	5 570	2 208	4 760	6 968	778	60	8	29			5%
Bangkok Metropolis	กรงเทพมหานคร	10 785 197	834 240	762 541	109 557	625 585	27 399	71 699	99 097	10 972	77	10	9	91%		1%
Bueng Kan	 ใบงกาพั	331 614	22 030	13 953	2 615	1 141	10 196	8 077	18 273	2 006	66	8	55			9%
Buri Ram	บีรัรม์ย	1 082 761	97 773	49 155	11 133	8 637	29 385	48 617	78 002	8 053	90	10	72			8%
Chachoengsao	้ฉะเชิงเทรา	813 403	41 433	27 084	5 538	772	20 775	14 348	35 123	3 944	51	7	43			10%
Chai Nat	ัชยนาท	260 001	20 029	12 864	2 618	4 251	5 994	7 166	13 160	1 409	77	10	51	64%	66%	7%
Chaiyaphum	ัชยู ภิม	850 758	61 752	37 079	8 159	575	28 345	24 672	53 017	5 423	73	10	62		86%	9%
Chanthaburi	้ จนทุบีร	471 645	32 874	24 280	4 274	13 086	6 920	8 594	15 513	2 321	70	9	33	74%	47%	7%
Chiang Mai	เีชยงให่ม	2 002 596	156 304	106 184	21 620	43 675	40 889	50 120	91 009	9 699	78	11	45	68%	58%	6%
Chiang Rai	เีชยงราย	1 189 139	67 159	41 134	7 574	15 519	18 041	26 025	44 067	4 699	56	6	37	61%	66%	7%
Chon Buri	ชลุบีร	2 191 356	273 936	223 032	36 273	78 058	108 701	50 904	159 605	14 764	125	17	73	81%	58%	5%
Chumphon	ุชมพร	486 237	35 089	20 301	4 453	2 389	13 459	14 789	28 248	3 054	72	9	58	58%	81%	9%
Kalasin	กาพีสนุ์ธ	738 430	54 171	31 077	6 746	5 616	18 714	23 094	41 808	4 383	73	9	57	57%	77%	8%
Kamphaeng Phet	ำาแพงเพชร	941 721	37 471	21 074	4 307	6 539	10 228	16 397	26 625	2 781	40	5	28	56%	71%	7%
Kanchanaburi	กาญจนุบีร	873 919	66 700	42 021	8 109	2 212	31 700	24 679	56 379	6 089	76	9	65	63%	85%	9%
Khon Kaen	ขอนแ่กน	1 744 760	133 100	85 967	16 726	11 095	58 146	47 133	105 278	11 038	76	10	60	65%	79%	8%
Krabi	กระี่บ	368 811	38 920	25 314	4 604	9 327	11 383	13 606	24 989	3 338	106	12	68	65%	64%	9%
Lampang	ํ ลาปาง	688 784	43 562	30 706	5 286	13 799	11 621	12 856	24 477	2 490	63	8	36	70%	56%	6%
Lamphun	ํ ลาูพน	435 066	23 332	14 328	2 897	6 608	4 823	9 004	13 827	1 434	54	7	32	61%	59%	6%
Loei	เลย	492 763	34 209	22 246	3 970	1 248	17 027	11 964	28 991	3 013	69	8	59	65%	85%	9%
Lop Buri	ลพุบีร	796 088	44 921	30 899	5 168	2 656	23 075	14 022	37 097	3 951	56	6	47	69%	83%	9%
Mae Hong Son	แ่ม่ฮองสอน	205 483	14 512	9 131	2 071	2 664	4 396	5 381	9 777	1 028	71	10	48	63%	67%	7%
Maha Sarakham	มหาสารคาม	723 603	50 180	28 253	5 518	1 626	21 108	21 927	43 035	4 435	69	8	59	56%	86%	9%
Mukdahan	ุมกดาหาร	411 370	17 940	10 291	1 891	3 621	4 779	7 649	12 428	1 339	44	5	30	57%	69%	7%
Nakhon Nayok	นครนายก	255 296	16 303	9 687	1 834	3 325	4 528	6 615	11 143	1 198	64	7	44			7%
Nakhon Pathom	นครปฐม	1 098 572	78 664	57 189	9 441	30 536	17 212	21 475	38 687	4 190	72	9	35	73%	49%	5%
Nakhon Phanom	นครพนม	496 763	41 543	23 131	5 529	1 604	15 998	18 412	34 410	3 791	84	11	69	56%	83%	9%
Nakhon Ratchasima	นครราชีสมา	2 470 984	211 246	131 127	24 261	45 355	61 511	80 119	141 630	14 829	85	10	57			
Nakhon Sawan	นครสวรร์ค	904 953	59 849	38 139	6 622	17 046	14 471	21 710	36 181	3 840	66	7	40			6%
Nakhon Si Thammara	t นครศีรธรรมราช	1 427 063	94 824	59 916	11 106	5 971	42 839	34 907	77 747	10 793	66	8	54			11%
Nan	'นาน	462 410	24 749	13 956	2 900	3 422	7 634	10 793	18 427	1 951	54	6	40			8%
Narathiwat	นราิธวาส	659 486	41 077	25 129	4 662	4 747	15 720	15 948	31 668	4 765	62	7	48			12%
Nong Bua Lam Phu	หนองับวํลาูภ	488 399	25 077	15 517	3 129	2 356	10 031	9 560	19 591	2 044	51	6	40			8%
Nong Khai	หนองคาย	429 413	30 134	21 360	3 896	7 410	10 054	8 774	18 828	2 091	70	9	44			7%
Nonthaburi	นนทุบีร	2 184 692	112 868	92 643	17 009	65 922	9 713	20 225	29 938	3 424	52	8	14			3%
Pathum Thani	ปุทมธาีน	2 611 522	121 885	95 920	18 399	11 449	66 072	25 965	92 037	9 618	47	7	35	79%	76%	8%

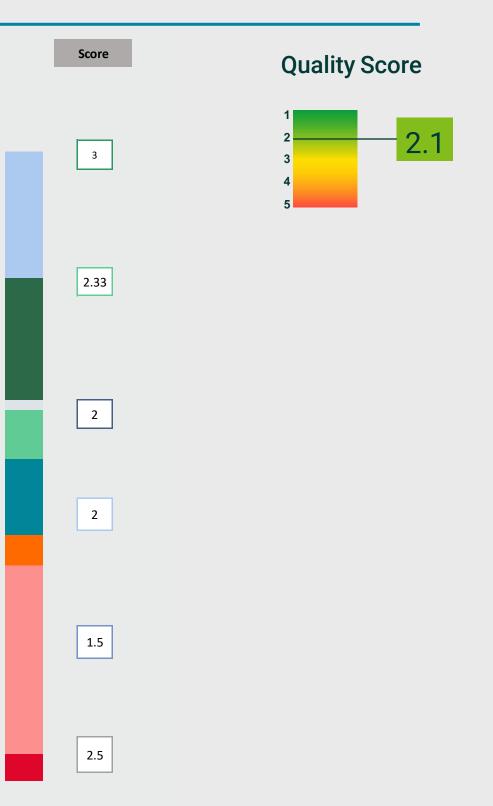
WASTE MANAGEMENT BY PROVINCE (2/2)

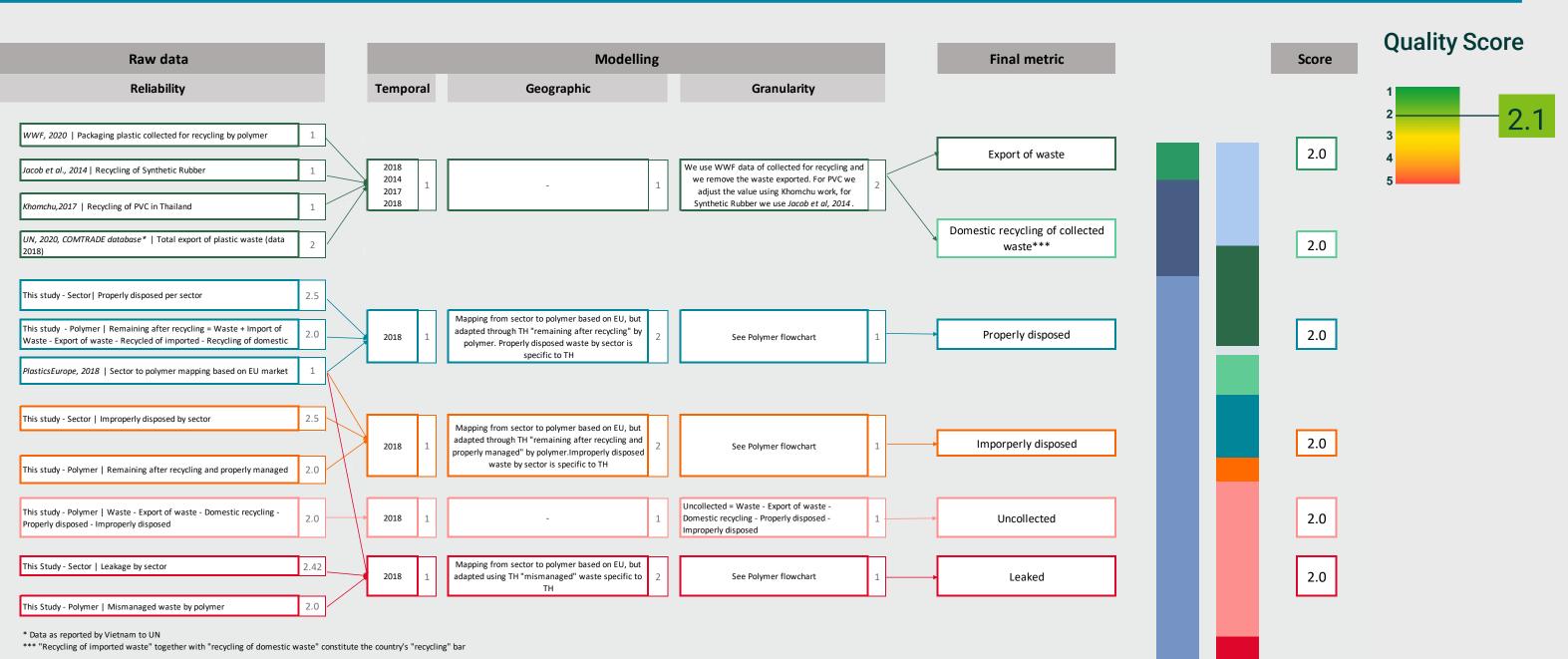
		1				1						1	1			
Province EN	Province TH	Population 2020	Generated t	Collected t	Collected for recycling t	Properly disposed t	Improperly disposed t	Uncollected t	Mismanaged t	Lookod t	Generated kg/hab	Collected for recycling kg/hab	Mismanaged kg/hab	Share of collected	Share of mismanaged	Leakage rate
									•		-				-	
Pattani	<u> </u>	612 840	38 333	23 159	4 481	4 667	14 012	15 173	29 185	3 240	63	/	48		76%	8%
Phangnga	้พงงา	267 708	16 956	13 230	2 252	3 225	7 753	3 726	11 479	1 643	63	8	43	78%	68%	10%
Phatthalung Phayao	ัพทุลง พะเยา	448 278 340 529	28 509 24 154	17 519 14 939	3 246 2 766	2 080 5 748	12 194 6 424	10 989 9 216	23 183 15 639	2 473 1 614	64 71	/ /	52 46	61% 62%	81% 65%	9% 7%
Phetchabun	เพชรูบร์ณ	914 770	50 236	31 401	5 694	6 294	19 412	18 835	38 247	3 968	55	0 6	40	63%	76%	8%
Phetchaburi	เพชรุบีร เพชรุบีร	510 840	38 451	27 994	4 610	10 540	19 412	10 457	23 301	2 481	75	9	42		61%	6%
Phichit	โพิจตร	523 832	27 576	15 780	2 832	3 526	9 421	10 437	23 301	2 318	53	5	40	57%	77%	8%
Phitsanulok	โพษุณโลก	1 048 573	66 928	36 259	6 554	6 463	23 242	30 669	53 910	5 883	64	6	51	54%	81%	9%
Phra Nakhon Si Ayut	1	762 411	81 872	57 913	11 285	12 083	34 546	23 958	58 504	6 634	107	15		71%	71%	8%
Phrae	แพ่ร	510 079	22 697	16 469	3 002	1 523	11 945	6 228	18 172	1 927	44	6	36		80%	8%
Phuket	ุภเ็กต	935 079	74 819	53 602	9 277	26 713	17 611	21 217	38 828	1 941	80	10		72%	52%	3%
Prachin Buri	ปราีจนุบีร	732 047	31 245	18 894	3 424	3 357	12 113	12 350	24 464	2 658	43	5	33	60%	78%	9%
Prachuap Khiri Khan	ประจวบีคีรัขน์ธ	482 641	36 830	24 128	4 705	11 132	8 291	12 702	20 993	2 013	76	10		66%	57%	5%
Ranong	ระนอง	354 672	39 316	21 289	7 132	218	13 940	18 027	31 967	3 633	111	20			81%	9%
Ratchaburi	ราชบีร	808 624	45 221	32 083	5 237	16 431	10 415	13 139	23 553	2 495	56	6	29		52%	6%
Rayong	ระยอง	1 266 852	114 495	81 747	13 970	35 801	31 977	32 748	64 725	5 914	90	11	51	71%	57%	5%
Roi Et	รอยโอด	936 516	65 782	37 959	7 195	735	30 029	27 822	57 851	6 130	70	8	62	58%	88%	9%
Sa Kaeo	สระแ้กว	621 068	28 860	16 277	3 759	1 874	10 644	12 583	23 226	2 468	46	6	37	56%	80%	9%
Sakon Nakhon	สกลนคร	853 004	59 280	32 343	6 804	6 236	19 303	26 937	46 240	4 945	69	8	54	55%	78%	8%
Samut Prakan	สุมทรปราการ	3 141 365	131 822	103 827	18 210	50 957	34 660	27 995	62 655	6 661	42	6	20	79%	48%	5%
Samut Sakhon	สุ่มทรสาคร	1 671 671	74 034	51 055	9 997	20 904	20 153	22 978	43 132	4 761	44	6	26	69%	58%	6%
Samut Songkhram	สุมทรสงคราม	164 619	10 570	8 285	1 338	332	6 614	2 285	8 899	1 042	64	8	54	78%	84%	10%
Saraburi	สระุบีร	910 984	38 620	31 832	4 974	18 804	8 053	6 788	14 841	1 562	42	5	16	82%	38%	4%
Satun	สูตล	276 371	16 405	10 768	1 909	3 298	5 561	5 637	11 198	1 163	59	7	41	66%	68%	7%
Si Sa Ket	ศีรสะเกษ	903 780	76 968	36 944	7 025	5 264	24 654	40 024	64 678	7 026	85	8	72	48%	84%	9%
Sing Buri	โสง์หุบีร	150 621	11 556	8 055	1 364	165	6 527	3 501	10 027	1 128	77	9	67	70%	87%	10%
Songkhla	สงขลา	1 707 065	132 351	93 998	16 277	49 510	28 212	38 353	66 564	6 626	78	10	39	71%	50%	5%
Sukhothai	ุสโขัทย	667 407	31 057	20 271	3 599	7 112	9 560	10 786	20 346	2 137	47	5	30	65%	66%	7%
Suphan Buri	ุสพรรณุบีร	834 369	42 695	26 278	4 891	6 328	15 059	16 417	31 476	3 451	51	6	38	62%	74%	8%
Surat Thani	<i>ุสราษ ฏ์</i> รธาีน	1 156 334	94 172	54 876	11 037	11 974		39 296	71 161		81	10	62			
Surin	ุสิรนท์ร	947 200	77 148	35 108	6 995	4 022	24 090	42 040	66 130	6 939	81	7	70			
Tak	ตาก	569 734	32 864	23 388	4 279	3 430	15 679	9 477	25 155	2 692	58	8	44			
Trang	ดัรง	587 139	39 566	23 099	4 749	6 289	12 062	16 467	28 529	3 901	67	8	49			
Trat	ตราด	243 236	13 615	10 000	1 700	3 162	5 138	3 615	8 753	728	56	7	36			5%
Ubon Ratchathani	ุอบลราชธาีน	1 777 691	106 224	57 500	11 215	11 118	35 168	48 724	83 891	9 128	60	6				9%
Udon Thani	ุอดรธาีน	1 125 459	87 924	60 686	11 050	16 399	33 238	27 238	60 476	6 352	78	10	54			7%
Uthai Thani	ุอัทยธาีน	290 535	16 503	9 068	1 757	3 005	4 306	7 435	11 741	1 242	57	6	40			
Uttaradit	ຸລตริดต์ถ	411 492	23 011	13 985	2 550	4 074	7 361	9 025	16 387	1 776	56	6				
Yala	ยะลา	448 349	34 175	21 244	4 199	5 833	11 212	12 931	24 144	2 650	76	9		62%		
Yasothon	ยโสธร	423 738	26 924	16 475	3 498	2 656	10 321	10 449	20 770	2 199	64	8	49	61%	77%	8%



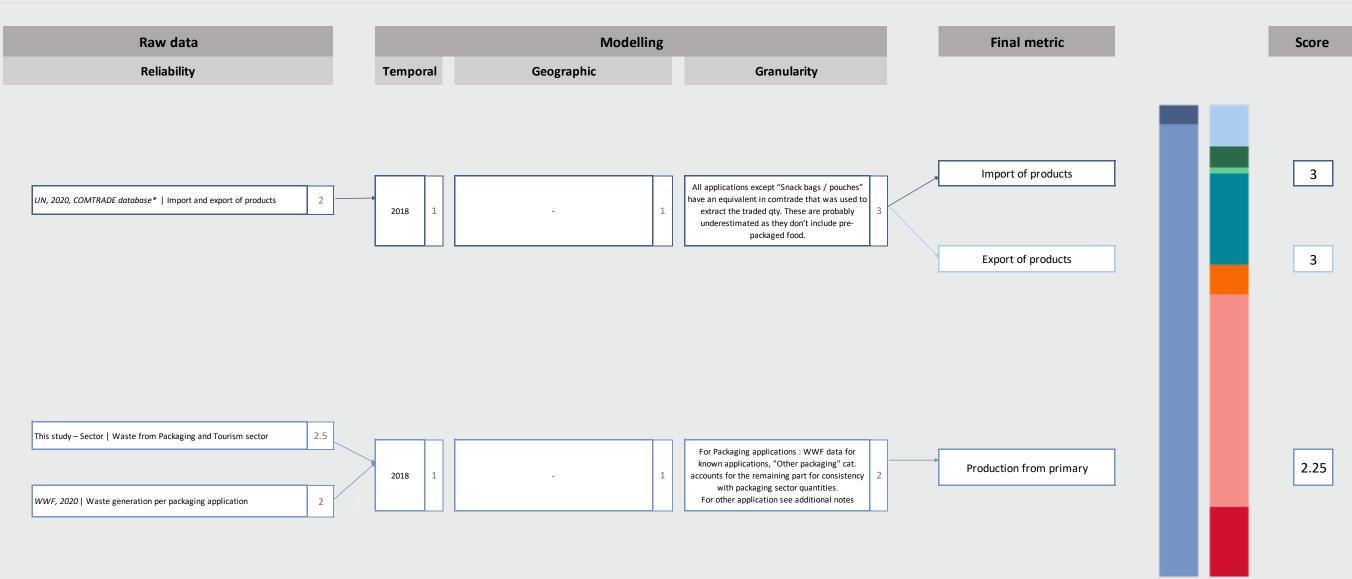
4.2 DATA QUALITY ASSESSMENT

ea + Quantis

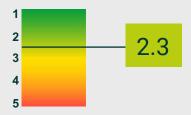

POLYMER HOTSPOTS DATA QUALITY ASSESSMENT (1/2)


* Data as reported by Vietnam to UN

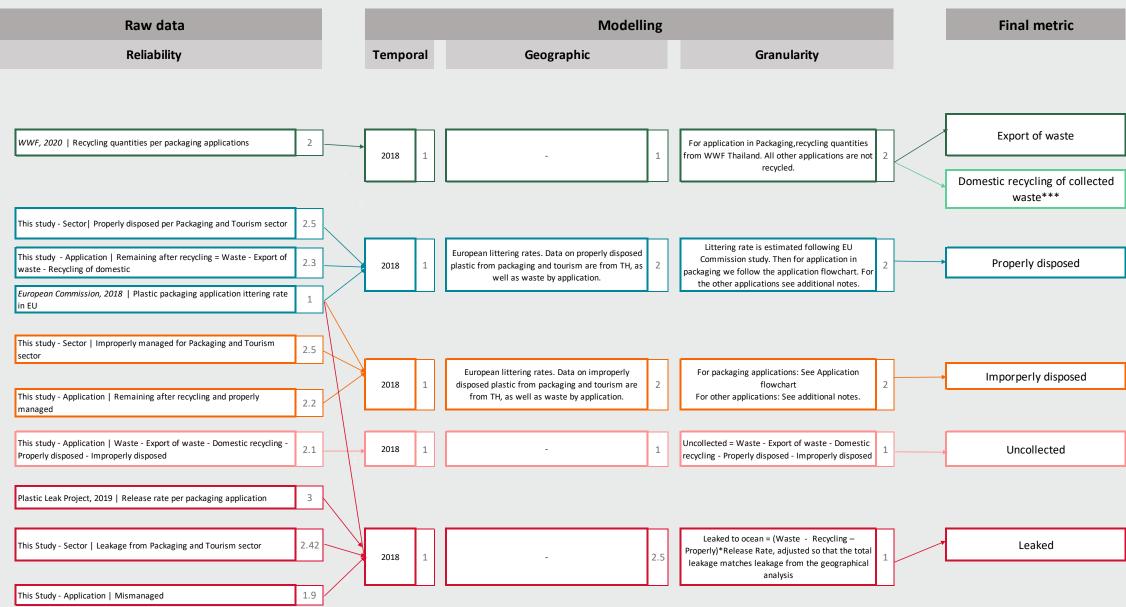
** Net input = Import waste - Recycling of import + import of products - Export of primary and products + Import and production of primary


*** "Recycling of imported waste" together with "recycling of domestic waste" constitute the country's "recycling" bar

POLYMER HOTSPOTS DATA QUALITY ASSESSMENT (2/2)



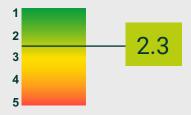
APPLICATION HOTSPOTS DATA QUALITY ASSESSMENT (1/2)



* Data as reported by Vietnam to UN

Quality Score

APPLICATION HOTSPOTS DATA QUALITY ASSESSMENT (2/2)



* Data as reported by Vietnam to UN

*** "Recycling of imported waste" together with "recycling of domestic waste" constitute the country's "recycling" bar

		Score
]		2
		2.1
]		2.1
		2.5

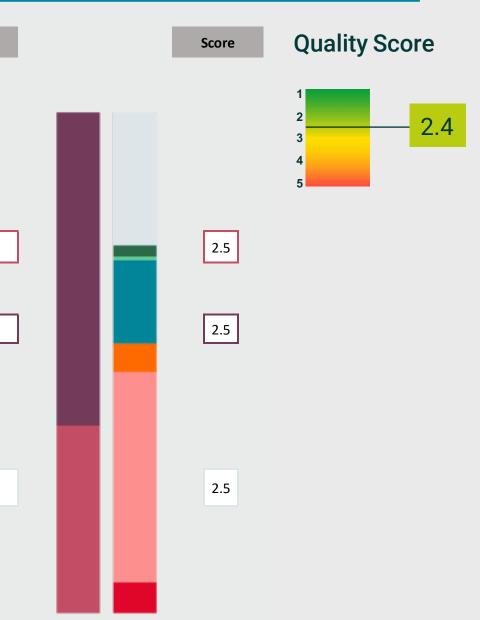
Quality Score

APPLICATION HOTSPOTS MODELLING NOTES

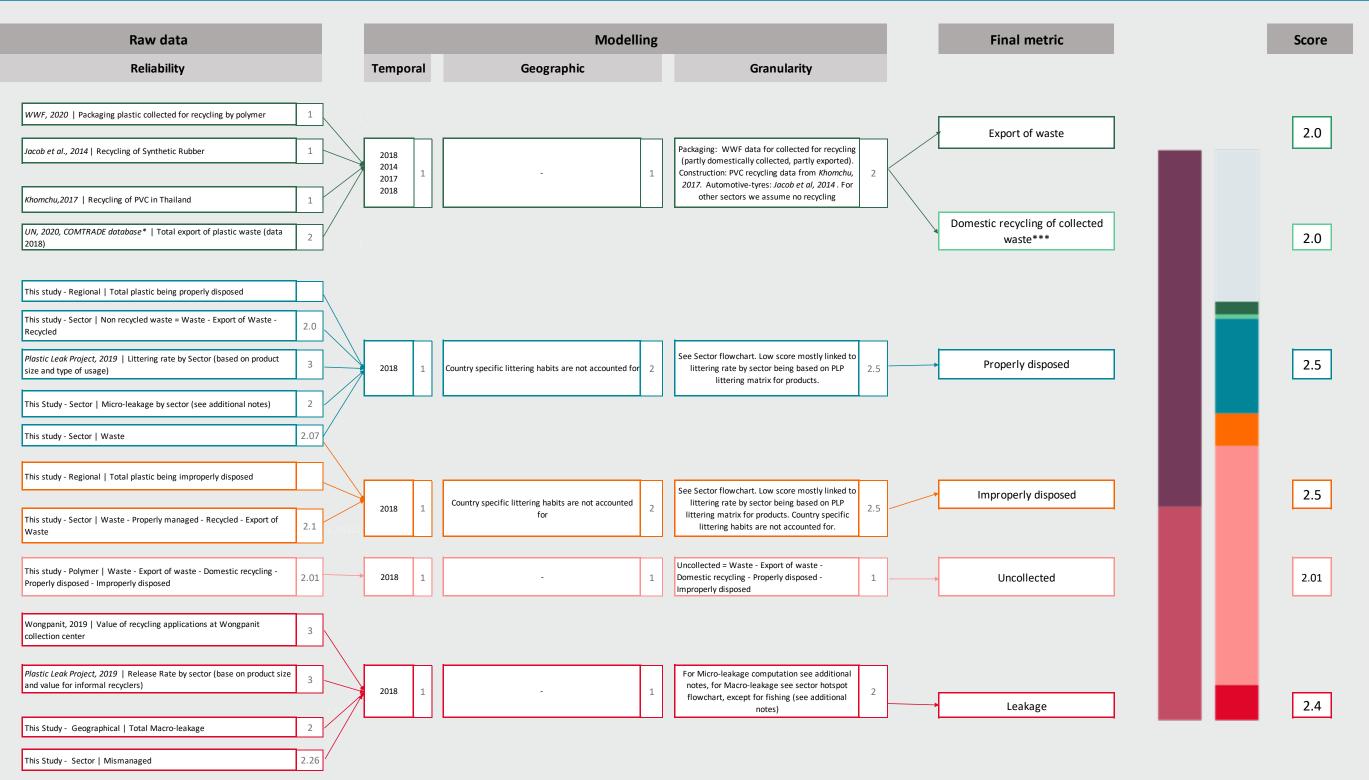
Cigarette filters

We estimate the number of cigarette filters from cigarette consumption data of the Tobacco Atlas project (src: *Kostova, D. et al.* (2014)). The plastic weight of a cigarette filter is 0.17gr (*Longwood University* (2008)). From these data we obtain the waste generated. Trade data on import and export are determined through comtrade (code: 240220). Recycling is set to zero. The share of properly managed is taken from the average share of properly managed (sector hotspot), applied to the cigarette filters that are not littered. Littering rate is set to 29% (*EuropeanCommission, 2018*). The improperly managed is based on the average share of improperly managed (sector hotspot), applied to cigarette filters not littered. The release rate is taken from *Plastic Leak Project* (2019) and applied to uncollected and improperly managed to determine de total leakage.

Baby diapers

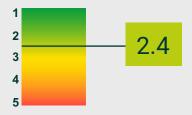

To determine de waste generation we consider that the middle and high income population (55%) from 0-2 years old (half of the 0-4 pop in UN statistics database), uses 4.16 unit of diapers/day (*Mendosa et al. 2018*). Average weight of a baby diaper is 29,1 grams, from which 33% is made of plastic components (*Espinosa et al. 2015*). Recycling is set to zero. The share of properly managed is taken from the average share of properly managed (sector hotspot), applied to the baby diapers that are not littered. Littering rate is set to 21%, based on EU littering report (using sanitary towels as a proxy). The improperly managed is based on the average share of improperly managed (sector hotspot), applied to baby diapers not littered or properly managed. The release rate for baby diapers is the same as for sanitary towels. Release rate is applied to uncollected and improperly managed to determine de total leakage

Sanitary towels


Import and export are determined through comtrade (code: 961900). Waste generation is estimated to be 140 million units (*Thai PBS World, 2019*), with one sanitary towel weighting 2gr. Recycling is set to zero. The share of properly managed is taken from the average share of properly managed (sector hotspot), applied to the sanitary towels that are not littered. Littering rate is set to 21% (*EuropeanCommission, 2018*). The improperly managed is based on the average share of improperly managed (sector hotspot), applied to sanitary towels not littered. The release rate is taken from *Plastic Leak Project (2019)* and applied to uncollected and improperly managed to determine de total leakage.

SECTOR HOTSPOTS DATA QUALITY ASSESSMENT (1/2)

Raw data				Modelli	ng		Final metric
Reliability		Temporal	1	Geographic	0	Granularity	
PlasticsEurope, 2018 Polymer to Sector mapping based on EU market Geyer et al., 2017 Product lifetime by sector, mean and std. This study – Polymer Net input by polymer*	1	2018 2017 2018 1	1	Mapping from Polymer net input to Sector net input based on EU market, adapted through VN polymer net input	2.5	For net input quantity see Sector Hotspot flowchart for all sector except for fishing, medical and tourism. Tourism net input is removed from packaging, fishing and medical net input are removed from "Other" sector. To determine long and short lifetime from net input, see Sector hotspot flowchart	Short-lived products Long-lived products
The World Bank, 2012 Manufacturing, added value, GDP growth Geyer et al., 2017 Product lifetime by sector, mean and standard dev.	1	2018 2017 2018 2012	1	-	1	See Sector hotspot flowchart. For medical, tourism and fishing we assume no change in stock. Low score because we assume the relative importance of every sector unchanged throughout the years in order to determine the stock.	 Change in stock
This study – Sector Net input* by sector The heightec Group Ltd, 2012 Product lifetime of textile sector	2.5						


SECTOR HOTSPOTS DATA QUALITY ASSESSMENT (2/2)

** Net input = Import waste - Recycling of import + import of products - Export of primary and products + Import and production of primary

*** "Recycling of imported waste" together with "recycling of domestic waste" constitute the country's "recycling" bar

Quality Score

SECTOR HOTSPOTS MODELLING NOTES (1/2)

Fishing

Data on number of fishing gears comes from the Marine management plan of Thailand 2015-2019 published by FAO. By default plastic weights by fishing gear type were derived from technical designs found in multiple publications including FAO. Combining these two pieces of information yields the net plastic input from fishing gears. Plastic leakage from fisheries can be divided into three component:

1) Leakage due to gears lost at sea during fishing operations;

2) Leakage from gears discarded and mismanaged on land;

3) Leakage from plastic waste littered overboard by some fishermen.

(1) Leakage due to gears lost at sea is computed using loss rates by fishing gear type provided by Richardson et al. (2019). For some fishing gears, loss is considered for fragments of the gear only, thus we had to make an assumption on how big a fragment would be (10%, 50% or 90% of a gear unit). Our default calculation takes the assumption of a fragment representing 50% of a gear unit. (2) Leakage from gear waste mismanaged on land is computed from the difference between net input and loss at sea, to which specific loss and release rates are applied. (3) Overboard littering is estimated by taking the average daily littering rate for packaging products in the country and applying it to the number of days each fisherman is out at sea (assumption: 120 days per year at sea for full time fishermen). The number of fishermen comes also from the Marine management plan of Thailand 2015-2019 published by FAO.

Medical

Total plastic waste generated by the medical sector is computed by combining the number of hospital beds 'B' (WHO statistics 2010), the average bed occupancy rate 'OR' (Abhicharttibutra et al., 2018), the total waste generated by bed 'Wb' (Adsavakulchai, 2002) and the average plastic share in medical waste (Mohee, 2002). Data from another country was used to proxy the share of plastic in waste as no medical waste characterisation study was found for Thailand. No distinction was made infectious and non-infectious medical waste.

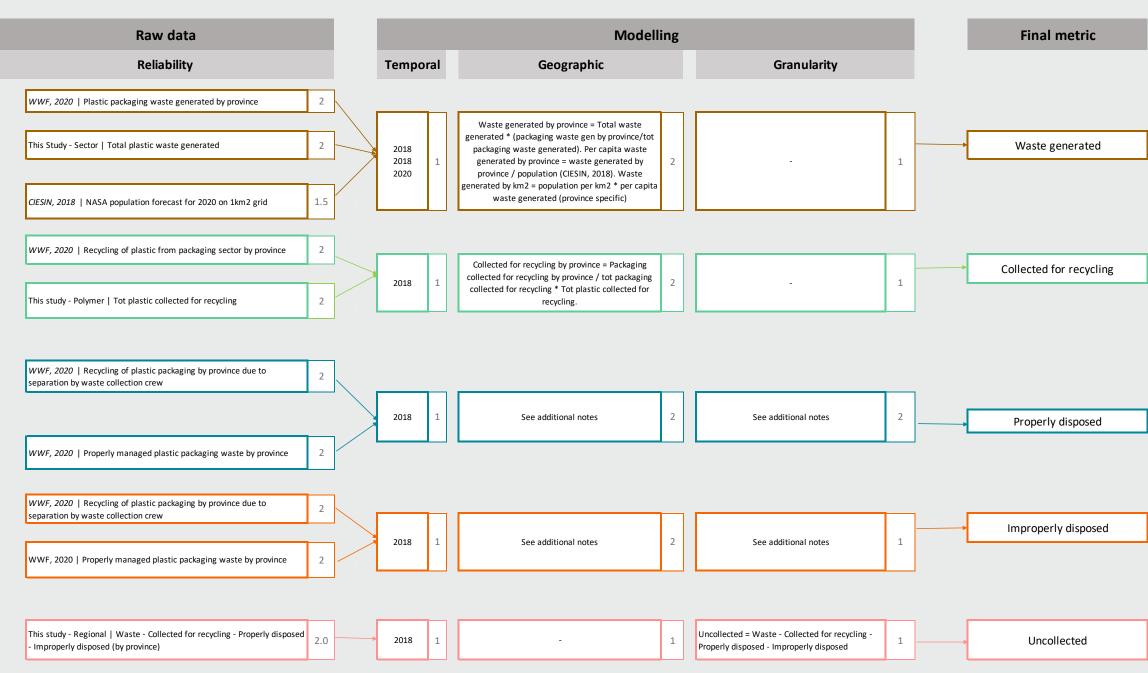
Tourism

Data on number of tourists and average stay length comes from the WTO Compendium of Tourism Statistics. We combine this information with the average plastic waste generation per capita per day derived from our calculations to estimate the plastic waste generated by the tourism sector. We make the assumption that a tourist will generate as much plastic waste as a Thai citizen.

NB: We assume these three sectors to be short-lived and for all the plastic in these sector to go to waste within the year, no stock generated. This is accurate for Medical and Tourism and it aligns with the way we computed the net input from these two sectors. For fishing instead it could mean that we are over-estimating the waste generated. Note that the waste generated from fishing gears is already quite low.

SECTOR HOTSPOTS MODELLING NOTES (2/2)

Micro-leakage

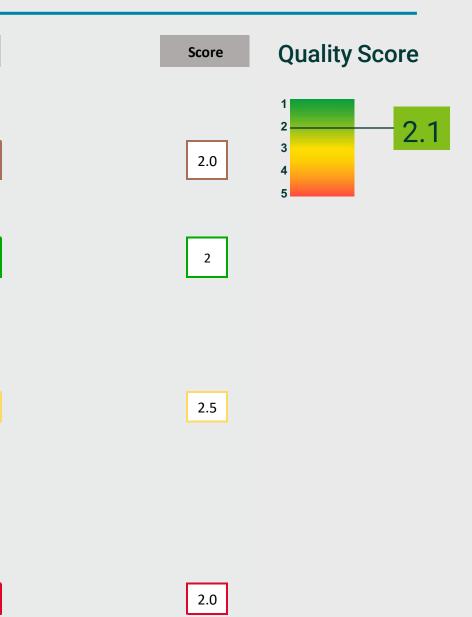

Tyre dust: loss and leakage of synthetic rubbers particles from tyres to the marine environment is calculated based on the methodology described in *PLP (2019)*. Its contribution to leakage is included in "Automotive-tyres". Data on vehicles numbers are taken from *ASEANStats (2017)* and average distance travelled are based on *Shabadin et al. (2018)*.

Textile fibers: loss and leakage of textile fibers to the marine environment is calculated based on the methodology described in the *Plastic Leak Project (2020).* Its contribution to leakage is included in "Textile".

Cosmetics: loss and leakage of plastic micro-particles from cosmetics to the marine environment is calculated based on the methodology described in *Plastic Leak Project (2020)*. Its contribution to leakage is included in "Others".

Pellets: loss and leakage the marine environment of plastic pellets during transportation and production stages is calculated based on the methodology described in *Plastic Leak Project (2020)*. Its contribution to leakage is included in "Others".

REGIONAL HOTSPOTS DATA QUALITY ASSESSMENT (1/2)



	Score	Quality Score
]	2	2 3 4 5
]	2	
]	2	
]	2	
]	2	

REGIONAL HOTSPOTS DATA QUALITY ASSESSMENT (2/2)

Raw data			Modelli		Final metric		
Reliability	Tem	ooral	Geographic		Granularity		
This Study - Regional Mismanaged = Uncollected + Improperly 2		_					
This Study - Regional Waste generated by province 2	2018	1		1.0	Share of mismanaged by province = Waste mismanaged by province / waste generated by province	1	Share of Mismanaged
	002083		II				
This study - Regional Collected = Collected for recycling + Properly 2 disposed + Improperly disposed 2	2018	1		1	Share of collected = Waste mismanaged by province / waste generated by province	1	Share of Collected
Richardson et al., 2019 Loss rate by fishing gear type 2							
Nédélec et al., 1990 Drawings of various fishing gear 2							
	1990 2015	2.5	See additional notes	2	See additional notes (Sector Quality assessment)	2	Leakage from fishing sector
FAO, 2015 Number of gear, fishermen, artisanal and commercial 2 fishing vessel 2	2019						
This study - Regional MWI by province 2.0							
NASA - SEDAC population count GIS Population on 1kmx1km grid 1.5							
WWF HydroRivers Country rivers 2		-	For each km^2 pixel: assign it to a watershed (based		· · · · · · · · · · · · · · · · · · ·		
WWF HydroSHEDS Country watersheds 1	2020 2019 2017	2	on its location) to know the runoff [R], compute the distance to shore or river (>10cms)[D], compute RR matrix*.	2		1	Macro-leakage from land
Lebreton et al., 2017 Catchment run-off of watersheds 2	2015		Leakage of pixel = population of pixel x MWI of province x RR				
Boucher et al., 2019, IUCN Release Rate matrix based on distance to waterbody and surface runoff 2.07							
Jambeck et al., 2015 Central estimate for maximum release rate 2	/						

*1 With max release rate from Jambeck et al., 2015: 25%; D1 short < 2 km, D2 long > 100 km (Sistemiq), R1 small < 1st quartile of world runoff, R3 large > 3rd quartile of world runoff (Lebreton et al; 2017)

REGIONAL HOTSPOTS MODELLING NOTES

Properly disposed and Improperly disposed

Data on properly and improperly managed waste by province comes from WWF study on plastic waste, but it is limited to packaging. We first scaled it up to the total plastic waste with the following formula:

Properly managed by province = Properly managed packaging by province / Total packaging waste in country * Total plastic waste in country.

And similarly for Improperly managed.

In a second step, we adapt this value to account for the waste the fact that packaging plastic collected by the crew is in part segregated for recycling, but non-packaging plastic is less likely to be recycled (see sector hotspot). Which means that the share of properly and improperly managed waste is higher for non-packaging plastic than for packaging plastic. This additional term for each province is equal to:

(Packaging segregated by crew / Packaging waste * Plastic waste - Packaging segregated by crew / Packaging recycled * Plastic recycled)* Properly managed / (Properly managed + Improperly managed)

And similarly for Improperly managed.

BIBLIOGRAPHY (1/3)

- Abhicharttibutra K, Wichaikhum O-A, Kunaviktikul W, Nantsupawat A, Nantsupawat R. Occupancy rate and adverse patient outcomes in general hospitals in Thailand: A predictive study. Nurs Health Sci. 2018;1–7. https://doi.org/10.1111/nhs.12420
- ASEANstats (2018). Road transports indicators. Retrieved from https://data.aseanstats.org
- Boopendranath, M. (2012). Basic principle of fishing gear desing and classification.

Boucher, J. et al. (2019). The Marine Plastic Footprint. IUCN.

- Center for International Earth Science Information Network CIESIN Columbia University. 2018. Population Estimation Service, Version 3 (PES-v3). Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). https://doi.org/10.7927/H4DR2SK5.
- Clean Virginia Waterways, Longwood University (2008). Cigarette butt litter. Available at: http://www.longwood.edu/cleanva/cigbutthowmany.htm
- Espinosa-Valdemar, R. M et al. (2015). Assessment of gardening wastes as a cosubstrate for diapers degradation by the fungus Pleurotus ostreatus. Sustainability, 7(5), 6033-6045.
- European Commission (2018). Plastics: Reuse, recycling and marine litter, final report. ICT, Eunomia.
- FAO (2015). Marine Fisheries Management Plan of Thailand: A National Policy for Marine Fisheries Management 2015-2019. Department of Fisheries, Ministry of Agriculture and Cooperatives, Thailand.
- GAIA (2019). Discarded : communities on the frontlines of the global plastic crisis. Report.
- Geyer, R. et al. (2017). Production, use, and fate of all plastics ever made. Science advances, 3(7), e1700782.

ICIS, Independent Commodity Intelligences Services. Plastic production in Thailand for 2018. https://www.icis.com/explore/

International Road Federation Kilometers of Travel.

Jacob, P. et al. (2014). Dealing with emerging waste streams: Used tyre assessment in Thailand using material flow analysis. Waste Management & Research, 32(9), 918-926. ISWA.

Lebreton, L. C., Van Der Zwet, J., Damsteeg, J. W., Slat, B., Andrady, A., & Reisser, J. (2017). River plastic emissions to the world's oceans. Nature communications, 8, 15611.

Jambeck, J. et al.. (2015). F 347(6223), 768-771.

Kaza, S. et al (2018). What a Waste 2.0 : A Global Snapshot of Solid Waste Management to 2050. Urban Development;. Washington, DC: World Bank. © World Bank. https://openknowledge.worldbank.org/handle/10986/30317 License: CC BY 3.0 IGO.

Khomchu, W. et al. (2017). Material Flow Analysis (MFA) and Life Cycle Assessment Study for Sustainable Management of PVC Wastes in Thailand (Phase III). In Computer Aided Chemical Engineering (Vol. 40, pp. 535-540). Elsevier.

Kishan, W. et al. (2018). Design characteristics and technical specifications of mackerel gill nets of Sindhudurg, Maharashtra. Journal of Experimental Zoology, India, 21(1), 373-378.

Kostova, D. et al. (2014). Exploring the relationship between cigarette prices and smoking among adults: a cross-country study of low-and middle-income nations. nicotine & tobacco research, 16(Suppl_1), S10-S15.

Lebreton, L. C et al. (2017). River plastic emissions to the world's oceans. Nature communications, 8, 15611.

International Road Federation (2009). World Road Statistics. Average Vehicle

Jambeck, J. et al.. (2015). Plastic waste inputs from land into the ocean. Science,

BIBLIOGRAPHY (2/3)

- Lehner, B. et al. (2008): New global hydrography derived from spaceborne elevation data. Eos, Transactions, AGU, 89(10): 93-94. Data is available at www.hydrosheds.org.
- Lehner, B. et al. (2013): Global river hydrography and network routing: baseline data and new approaches to study the world's large river systems. Hydrological Processes, 27(15): 2171–2186. Data is available at www.hydrosheds.org.
- Mendoza, J. M. F. et al. (2019). Improving resource efficiency and environmental impacts through novel design and manufacturing of disposable baby diapers. Journal of Cleaner Production, 210, 916-928.
- Nédélec, C., & Prado, J. (1990). Definition and classification of fishing gear categories (No. 222). FAO.
- Ocean Conservancy (2019). "The Beach and Beyond" coastal clean-up report 2019.
- Pasukphun, N. et al. (2019). Waste Composition Evaluation for Solid Waste Management Guideline in Highland Rural Tourist Area in Thailand. Applied Environmental Research, 41(2), 13-26.
- Petroleum Institute of Thailand (2018). Thailand Petroleum and Petrochemical Complex Capacity.

PlasticsEurope (2018). Plastic - the Facts 2018.

- PLP (2019). Plastic Leak Project. (https://quantis-intl.com/metrics/initiatives/plasticleak-project/)
- Pollution Control Department, Ministry of Natural Resources and Environment (2018). Booklet on Thailand State of Pollution 2018.

Prado, J. et al. (1990). Fisherman's workbook. Fishing News Books.

Queirolo, D. et al. (2009). Improved interspecific selectivity of nylon shrimp (Heterocarpus reedi) trawling in Chile. Latin American Journal of Aquatic Research, 37(2), 221-230.

Kilometers of Travel.

Richardson, K. et al. (2019). Estimates of fishing gear loss rates at a global scale: A literature review and meta-analysis. Fish and Fisheries, 20(6), 1218-1231.

Shabadin et al. (2014). Car Annual Vehicle Kilometer Travelled Estimated from Car Manufacturer Data - An Improved Method.

Suwannee A. (2002). Study on waste from hospital and clinics in Phitsanulok. Online J Health Allied S cs . 2002; 3: 3

Tajima, R. et al. (2019). Generation of and solutions to canal waste: a case study in Bangkok. In Proceedings of the Annual Conference of Japan Society of Material Cycles and Waste Management (p. 511). Japan Society of Material Cycles and Waste Management.

Thai PBS World (2019, December 19). 'Sanitary napkin: big market for this delicate product' Thai Public Broadcasting Service. Retrieved from: https://www.thaipbsworld.com/sanitary-napkin-big-market-for-this-delicateproduct/

The heightec Group Ltd (2012). Lifespan of textile products. Retrieved from: https://www.heightec.com/app/uploads/Lifespan-of-textile-products.pdf

The World Bank, World Development Indicators (2012). Industry (including construction), value added (annual % growth). Retrieved from https://data.worldbank.org/indicator/NV.IND.TOTL.KD.ZG

International Road Federation (2009). World Road Statistics. Average Vehicle

BIBLIOGRAPHY (3/3)

- UN Environment (2018). "Table A3. Use share of polymer resin production according to plastic application" in Mapping of global plastics value chain and plastics losses to the environment (with a particular focus on marine environment). Ryberg, M., Laurent, A., Hauschild, M.(2018) United Nations Environment Programme. Nairobi, Kenya
- United Nations (2018). Department of Economic and Social Affairs, Population Division. World Population Prospects: The 2019 Revision. (Medium variant). Thailand population age structure.
- United Nations (2020). COMTRADE database. Import and export data 2018. Retrieved from https://comtrade.un.org/data/
- Van Den Berg, K. et al.. (2018). Solid and industrial hazardous waste management assessment: options and actions areas (No. 128402, pp. 1-131). The World Bank.
- Wongpanit International Co. (2020). Price notification of purchase of products [online]. Retrieved from: http://www.wongpanit.com/print_history_price/468 (accessed on 19/05/2020).
- World Health Organization, The Global Health Observatory (2020). Thailand statistics summary (2002-present). Retrieved from https://apps.who.int/gho/data/node.country
- World Tourism Organization (2020). Compendium of Tourism Statistics. Basic data and indicators for Thailand. Retrieved from https://www.eunwto.org/loi/unwtotfb
- WWF (2020). Preliminary findings: the flows of plastic waste in Thailand. (unpublished data)

THAILAND Country report

Published in October 2020, with results for year 2018

Implemented with

0

