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Glossary 

ABNJ  Areas Beyond National Jurisdiction 
AI  Artificial Intelligence 
AIS  Automatic Identification System 
BBNJ  Biodiversity Beyond National Jurisdiction 
BE  Blue Economy 
BEKS  Blue Economy Knowledge System 
CCAMLR Convention on the Conservation of Antarctic Marine Living Resources 
EDA  Ecosystem Diagnostic Analysis 
EEZ  Exclusive Economic Zone 
EM  Electromagnetic 
FFEM  French Global Environment Fund 
GEF  Global Environment Facility 
GFW  Global Fishing Watch 
ICCAT  International Commission for the Conservation of Atlantic Tunas 
ICM  Integrated Coastal Management 
IMO  International Maritime Organization 
IUCN  International Union for Conservation of Nature 
IUU  Illegal, Unreported & Unregulated (Fishing) 
MPA  Marine Protected Area 
MSP  Marine Spatial Planning 
NGO  Non-Governmental Organisation 
OSPAR  Oslo Paris Commission 
PEMSEA Partnerships in Environmental Management for the Seas of East Asia 
RFMO  Regional Fisheries Management Organisations 
SAR  Synthetic Aperture Radar 
SDG  Sustainable Development Goal 
SIDS  Small Island Developing States 
SSC  Sargasso Sea Commission 
UN  United Nations 
UNCLOS United Nations Convention on the Law of the Sea 
UNDP  United Nations Development Programme 
VIIRS  Visible Infrared Imaging Radiometer Suite  
VMS  Vessel Monitoring System 
WCPFC  Western and Central Pacific Fishing Convention 
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1 Background 

The Sargasso Sea is a 2 million square mile open ocean high seas ecosystem. In 2022, the 
Sargasso Sea Commission (SSC) will be embarking on a major Ecosystem Diagnostic Analysis 
(EDA) financed by grants from the Global Environment Facility (GEF) and the French Global 
Environment Fund (FFEM) with the support of a wide number of partners including the 
currently ten Government Signatories1 to the 2014 Hamilton Convention on Collaboration for 
the Conservation of the Sargasso Sea. In support of this project, the Swedish Government has 
mobilized funding through the International Union for Conservation of Nature (IUCN) for a 
study on the challenges and opportunities presented by the possible use of “Big Data” and 
Artificial Intelligence (AI) systems for the management and conservation of high seas 
ecosystems. 

 
Figure 1: 1891 Sargasso See, Krummel Petermanns Lores (Wikipedia Commons) 

2 Report Purpose & Methodology 

The report2 aims to articulate the potential opportunities in the utilisation of “Big Data” and 
AI in providing future ocean governance at the global level, set in the context of a high-level 
user requirements assessment of the challenges to effective ocean/high seas governance. 
Our research and analysis focused particularly on the complexities associated with 
ungoverned sea spaces in Areas Beyond National Jurisdiction (ABNJ), a key characteristic and 
fundamental challenge faced in the Sargasso Sea. It reviews the current state-of-technology 
in earth- and space-based remote sensing and the use of AI technologies to access and 
analyse Big Data, creating information in a strategic and cost-effective way for the 
governance, management, and conservation of remote ocean areas. 

 
1 Azores, Bahamas, Bermuda, British Virgin Islands, Canada, Cayman Islands, Dominican Republic, Monaco, UK & US. 
2 Caveat: this report has been somewhat restricted, both in timescale and resource available. As such, it does not seek to present itself in 
the style, or with the heft, of an authoritative peer-reviewed academic paper. 
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What the report does not aim to provide are specific solutions to the considerable barriers 
that exist in data-sharing; this is outside the scope of this work, although it does set-out the 
key data-sharing challenges that do need to be solved and makes some recommendations as 
to how some of these challenges may begin to be addressed. 

To do this we drew on the advice of the SSC Expert & User Groups and others, to help us to 
assess these technologies and map potential future developments. We also leveraged the 
considerable capabilities of NLA International’s in-house bespoke market intelligence 
curation and activation system – Blue Economy Knowledge System (BEKS) – to rapidly search 
on-line communities to assist in quickly building a contemporary picture of what is being 
discussed, researched, and operationalised. The report identifies key technologies, datasets 
and stakeholders including data and technology providers, associated existing and potential 
end-users, and assesses the possibilities and limitations of existing Big Data and AI capabilities 
and initiatives. It outlines some of the risks, challenges, and opportunities they present for 
effective surveillance, monitoring, and potentially enforcement, of conservation and 
management measures in remote areas of the oceans beyond national jurisdiction. 

It aims to suggest ways in which small organisations such as the SSC might use Big Data and 
AI solutions to strategically influence the long-term data gathering, monitoring, valuing, 
governance and management of remote ocean spaces and their ecosystems, and suggest a 
user decision-making protocol, covering factors such as time, cost, quality, availability, and 
compatibility. 
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3 Executive Summary 

Ocean Governance is a strategy used to manage human activities in an ocean, towards 
sustainable use and ecological regeneration. It is informed by, and includes, a whole range of 
economic, scientific, ecological, and financial activities and policies, covering all events in the 
ocean space, at local, regional, national, and global levels. The commercial use of the oceans 
in general (and especially of the high seas) can be seen as a tragedy of the commons. Almost 
two thirds of the oceans are ‘high seas’, often referred to as Areas Beyond National 
Jurisdiction (ABNJ) and are subject to limited Ocean Governance. 

There is a growing appetite for increased governance of the high seas. Problems that start 
outside of EEZs can gradually migrate inside, both in terms of human activity, and its 
ecological consequences; modelling shows that damage to key high-seas ecosystems has as 
great an impact to coastal ecosystems as to the original locations. There is also a growing 
sense of inequity between those fishing inside and outside of EEZs; the accelerating and highly 
unequal industrial use of the oceans for mineral extraction, and harvesting of genetic 
resource, exacerbates these concerns. 

A primary barrier to establishing ocean management in the high seas is developing sufficient, 
high-certainty evidence, to justify the implementation of policy. The requirement to evidence 
a likelihood of ecosystem damage from human activities is often interpreted as one to provide 
evidence damage already done, with a clear attribution of cause. This is an obstacle to taking 
a precautionary approach to industrial ocean use, and hinders early ecosystem protection, 
with a view to preventing damage until cause is better understood, and mitigations 
developed. Furthermore, establishing evidence with a sufficient level of confidence is an 
expensive and expert process – an ocean ecosystem assessment for a small Central American 
nation has costs of the order of six million US dollars. If the ambition is to assess and manage 
ocean ecosystems globally, we must seek solutions that reduce the cost of this process and 
improve access to the necessary knowledge and technologies. In part, this cost reflects a 
global inequity in expertise. 

It also reflects the current state of ‘Big Data’ for ocean ecosystems; whilst vast quantities of 
ocean ecosystem data have been gathered over decades through both research and 
commercial activities, little of it has been practically operationalised with a view to ocean 
management. The state-of-play is characterised by inconsistent cataloguing, limited data 
sharing (for reasons of cost, difficulty, and perceived commercial/national sensitivity), poor 
standardisation (both within and across ocean sectors), and low data retrievability – requiring 
specialist expertise and comprehensive knowledge to find data and then select the right data 
for a particular task. 

There is a pressing need to address these issues, and we propose four main avenues to do so: 
Promoting open-source non-rivalry data sharing for the high seas, premised on a global 
commons, justifying data transparency, and potentially seeking implementation in policy 
(e.g., through the Biodiversity Beyond National Jurisdiction (BBNJ) Treaty); Facilitating data 
sharing by all parties, including those already willing to do so (e.g., academia and NGOs), by 
establishing funding for data sharing (potentially in research grants and project budgets) and 
building expertise; Establishing data and meta-data standards across types and sources, 
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towards maximising data use, discovery, and interoperability and, most importantly; 
Accelerating the design, realisation, and support of ocean Big Data sharing platforms, 
potentially aligned to the system requirements we put forward in Section 5.2.1, with a 
fundamental focus on end-user needs and non-expert use. 

There is no likelihood that the scale of Big Data needs for ocean ecosystem analysis or 
management can be reduced; the complexity of the problem necessitates a Big Data 
approach. There is a requirement for high resolution 4D data, spanning large ocean zones to 
depth, over long-time scales, and from numerous remote sensing sources including earth 
observation, ocean-surface sensors, and those within the water column: the quantity and 
variety of necessary data is vast and increasing. There is also a need for targeted 
improvements to our sensing capabilities, substantial benefit could be derived from more 
sensors integrated on vessels/platforms of opportunity to provide ecosystem data and assist 
in observing human activity. In addition, there is demand for improved sub-surface sensing 
(particularly with a view to future industrial ocean uses, such as deep-sea mineral extraction). 
The necessary sensor technologies are all within the art of the possible, and the challenge is 
implementation, not development. 

Establishing appropriate Big Data infrastructure is a pre-requisite to applying the many AI-
based analytic tools that may be of benefit to the domain. Computing power, quantity of 
available data, and data gathering have historically been barriers to Artificial Intelligence 
based approaches. It is only relatively recently, with modern computational capabilities and 
data infrastructures, that these approaches have become viable. They present a natural 
evolutionary step in data analysis, modelling, and prediction – and as is already the case in 
many sectors, it is likely that they will come to underpin the methods used for ocean 
ecosystems analysis, and therein evidencing and implementing Ocean Governance. The 
numerous forms and benefits of AI are detailed in Section 5.2.2, but by way of simplification 
AI approaches fall into two categories. One is the intelligent automation of analysis, 
monitoring, and decision making, that is currently undertaken by trained human experts; this 
usually combines rules-based approaches (which codify human knowledge in algorithms) with 
‘machine vision’ techniques such as image recognition (e.g., to identify vessels from satellite 
imagery). Therein, an AI system becomes capable of replicating expert practice, which is 
necessary to achieve the scale of analysis that comes with Big Data problems. Furthermore, 
if such systems are generally accessible, or to some degree built into data sharing platforms, 
this may be seen as a means of reducing the global inequity of expertise. 

This category of AI use is predicated on a priori knowledge, it assumes we know what data is 
important, and that we already understand ecosystem behaviour, and can therefore codify 
its analysis. For specific, well-defined, tasks this may be the case (e.g., identifying vessels 
entering MPAs). However, for the general task of ocean ecosystem analysis it is not. Ocean 
ecosystems exhibit complexity; their properties are emergent, and exhibit deep correlations 
across physical, biological, climatic, and human processes. From the human perspective, 
piecing together all the information and correlations necessary to interpret and model this 
complexity is a near impossible task. Here, a second form of AI approach – using novel Deep 
Learning and Generative AI methods – could prove useful, which uses bias-free learning 
approaches to study all sources of data, free from human guidance or intervention, to identify 
these deep correlations, and then build models for system behaviour. These advanced 
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approaches can assemble knowledge from data, allowing us to associate cause with 
phenomenon, explore hypothetical scenarios, retrospectively analyse past events, and better 
understand which data sources are most important. These may powerfully contribute to our 
understanding of ocean ecosystems, but, even more so than traditional AI, are dependent on 
a mature, highly consistent, Big Data infrastructure. 

There is no doubt that Big Data and AI approaches have a key role to play in Ocean 
Governance, starting with scalable, cost-effective, evidence generation to inform 
management and policy. However, special attention must be paid to a crucial non-technical 
barrier to use – trust. The quality, or benefit, of a new solution is irrelevant if lack of trust 
prevents uptake. In purely operational domains trust can successfully be generated through 
demonstration (for example, the use of AI in various forms of autonomy); governance is not 
purely operational though – it has human, economic, and political consequences. Already, a 
barrier to establishing governance is building sufficient evidence; whether simply via data 
analysis, or through a complex, black-box, AI-driven system, the methodology for evidence 
generation must be trusted. Therefore, understanding and solving issues of trust are a 
priority. A perceived lack of trust can easily be used as a justification for inaction. Building 
consensus on what trust means, and how it is achieved, should run before and alongside any 
technical development – not after it. 

The Big Data and AI concepts discussed within this report all represent the current art of the 
possible; they reflect cutting-edge practice in technologized sectors, which is now being 
tested in and translated to other domains. None of these solutions will be without cost. Big 
Data infrastructure is both costly to develop and to maintain, and AI solutions – whilst 
predicated on general concepts – will need to be tailored to, and trained for, the domain at 
hand. There is no surfeit of expertise in artificial intelligence, and many sectors are fiercely 
competing for limited capacity. As a priority, the technology needs for high seas governance 
should be formalised and communicated to the AI sector – as an issue of global significance 
seeking an immediate solution – ideally associated with clear, funded, pathways to feasibility 
testing and subsequent development. 

3.1 Conclusions 

• The provision of contemporary good Ocean Governance and the use of technologies 
underpinned by Big Data and Artificial Intelligence are inextricably linked. 

• The Technology exists today to generate suitably diverse, relevant, and sufficient ocean 
data. This Big Data can be analysed using Artificial Intelligence to: 

o Generate the necessary understanding of the relationships between human activities 
and their impact on the complex ocean biological and environmental ecosystems. 

o Provide compelling evidence to establish the need for good Ocean Governance by 
informing decision-makers responsible for creating good Ocean Governance policies. 

o Generate convincing, near-real time, maritime domain situational awareness to enable 
policing and enforcement of human-related activities and where appropriate, underpin 
subsequent judicial action. 

o Provide suitable Measures of Effectiveness of in-place Ocean Governance policies to 
allow for subsequent review, revision, and release. 
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• A consistent barrier to justifying, evidencing, and implementing Ocean Governance is data 
sharing, availability, quality, and utility. Addressing these is a first order need and may be 
a pre-requisite to many AI methods. Specifically, data sharing and analytics platforms, 
combined with a drive for open data, is foundational to technologized governance. 

• A key challenge in using Big Data and AI for Ocean Governance is one of trust; both trust 
in data and methods, and trust in key organisations and platforms to enable data sharing 
towards improved understanding. There are technical and human elements to this, and 
trust must be established alongside technology, with a focus on open data, algorithms, and 
methodologies. 

3.2 Recommendations 

• Facilitate Big Data standardisation, cataloguing, and the development of sharing and 
analytics platforms, paying equal attention to both technical and human requirements. 
Priority should be placed on technological ubiquity and equity, to improve cost-effective 
ocean ecosystem analysis, to support high-seas governance. 

• Promote, incentivise, and support data sharing and FAIR data principles, and help to 
mitigate the costs of data-sharing that limit what is feasible, especially for researchers and 
NGOs. 

• Initiate and advance discussions towards agreement or policy for open-source data from 
the high-seas, potentially using the Biodiversity Beyond National Jurisdiction (BBNJ) Treaty 
as a mechanism, with a view to opening-up data from private and national sources. 

• Utilise Big Data and AI methods to distinguish the most important forms of data for ocean 
ecosystem analysis, and therein reduce extraneous data gathering, and enhance remote 
sensing for critical information. 

• Explore and define specific use-cases for Big Data and AI-enabled/enhanced governance, 
including analysing service demand, cost, and acceptability, with a view to road-mapping 
the development of data and analytics services, identifying closest-to-realisation solutions, 
and pre-emptively addressing issues of trust. 

• Strategically specify and then run feasibility studies for the use of AI methods for ocean 
ecosystem analysis, and to both automate and facilitate ocean management, seeking to 
demonstrate effective solutions and translate the state-of-the-art, from other 
technologized sectors. 

• Develop technologically underpinned concepts for dynamic ocean ecosystem governance, 
using remote sensing and AI analysis to flexibly define protection as and when it is 
necessary, and to communicate this to all ocean users in a ubiquitous and accessible form. 

• Undertake wider stakeholder engagement, seeking to understand what acceptable and 
good high-seas governance looks like, to both the industrial users of the high seas, and the 
many coastal economies whose livelihoods indirectly depend on high seas ecosystems, 
who need ecosystem analysis data products, and who may facilitate implementation. 
Engage in capacity building to improve the sectoral understanding of the state-of-the-art, 
and to improve access to Big Data or AI-based ocean management solutions. 
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4 The Needs of Ocean Governance and Technology 

4.1 The need for governance 

Ocean Governance is a strategy used to manage human activities in an ocean towards 
sustainable use and ecological regeneration. It is informed by, and includes, a whole range of 
economic, scientific, ecological, and financial activities and policies, covering all events in the 
ocean space, at local, regional, national, and global levels. The process of establishing 
governance should be granular, transparent, consultative, and ultimately evidence based. 
Ocean Governance necessarily involves action, response, and enforcement, requiring physical 
implementation at the lowest level, typically for remote sensing and responsive enforcement. 

 
Figure 2: The light blue waters in this map represent all the high seas. (Pew) 

The commercial use of the oceans in general (and especially of the high seas) can be seen as 
a tragedy of the commons. Almost two thirds of the oceans are ‘high seas’, often referred to 
as Areas Beyond National Jurisdiction (ABNJ) and are subject to limited Ocean Governance. 
The United Nations Convention on the Law of the Sea (UNCLOS) regulates, to some extent, 
human activities in ABNJ, putting a premium on the “protection and preservation” of the 
ocean (Art 192), but the high seas regime has been called an “unfinished Agenda”3. When the 
treaty was negotiated in the 1970s many of the riches of ocean biodiversity and its resources 
were unknown. Moreover, the implementation of UNCLOS is varied – there are examples of 
good implementation (discussed later), but the prevailing view is that most implementation 
is poor and constitutes a race to the bottom exacerbated by entrenched interests and lacking 
transparency. Many discussions of Ocean Governance centre around commercial fishing and 
whilst it is not the only industrial human activity on the oceans, it is the one with evident 
ecological consequences, covering over 55% of the world’s oceans. Fishing Fleets with 
increasingly global reach are being subsidised to fish greater and greater distances from their 
home shores. The consequence of this is diminishing resource availability and significant 
ecological damage, particularly to high-seas areas where the UNCLOS implementation has not 

 
3 Freestone, David. "Governance of Areas Beyond National Jurisdiction: An Unfinished Agenda of the 1982 Convention." UNCLOS at 30 
(2015).  Barnes, Richard, and Jill Barrett. Law of the Sea-UNCLOS as a Living Treaty. BIICL, 2016., pp. 231-266. 



PBO00443 / P03733 / AVCH-00xxx – 2021-12-21 
Governance of High Seas Ecosystems: Big Data & AI/Version 1.1 

12 

matched the threats posed by this activity or has only done so within a narrow remit (for 
example, there is rapidly growing, unregulated, squid fishing in the high seas, predominantly 
by long-distance fleets). In the absence of governance and strong implementation there is no 
reason to expect that behaviour will change without radical changes in the governance 
regime. Furthermore, other industrial uses of the ocean, such as seabed mining, whether in 
the high seas or EEZs (particularly of developing and industrialising nations), may well proceed 
in the same way if not subject to considered regulation. 

 
Seabed. Photo: Kevin Clyde Berbano (Pexels) 

In both economic and ecological senses, this practice is unsustainable. It can also be seen as 
self-reinforcing. In a tragedy of the commons, it is often the case that mitigating evident issues 
(such as resource depletion), and therefore enabling sustainability, is consistently seen as 
‘someone else’s problem’. Whilst sustainable solutions and practices enabling long-term 
economic benefit might exist, they will usually require external impetus (often in the form of 
governance and investment) to change behaviour. This is not a theoretical issue, and we have 
seen collapses in fisheries already, such as the well-known case with Northern Cod. In general, 
we need approaches to managing our natural ocean resources more effectively. 

One may comment here that a further challenge is the sector specific nature of governance 
and implementation; implemented by bodies that each have very focused remits. Ocean 
ecosystems are complex; ‘complexity’ is a term often used, but with a specific technical 
meaning – a complex system is inherently ‘more than the sum of its parts’, it cannot be 
characterised, predicted, or managed, by looking at each of its parts in isolation4. Therein, 
effective governance of ocean ecosystems may require cross-sectoral strategies, and 
governance frameworks that are designed with this in mind. 

 
4 This has had profound impacts to engineering and systems analysis in adjacent, complex, domains. For example, engineering complex 
semi-conductors for reliability has resulted in a ‘good + good = bad’ philosophy; by maximising the reliability of each component, the 
reliability of the system is dramatically reduced – it must be optimised “as a whole”. Whilst this may sound like an esoteric example, the 
nature of complexity is not domain specific; ecosystems must be treated as a holistic, complex, whole – not as a sum of independent parts. 
It may be that only by maintaining a holistic overview can ecosystem sustainability be achieved. One notes too that the recent (2021) 
Nobel Prize in Physics was awarded for the study of complexity, pertaining specifically to modelling global climate and therein climate 
change. 
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In areas with active Ocean Governance, efficacy can be reduced due to limitations in 
monitoring and enforcement. This is particularly true for Small Island Developing States 
(SIDS), for whom enforcement can be a challenge beyond immediate coastal waters. Remote 
sensing and analytics tools are seen as a potential solution here and have seen success in 
reducing illegal fishing around the Ascension Islands5. 

It is also not always the case that where governance exists, it is sufficient. Loopholes in 
governance, especially relating to fishing, drive exploitative practices. An example of this can 
be seen in high-seas squid fishing, which does not fall under the competence of Regional 
Fisheries Management Organisations (RFMOs) and is seeing rapidly increasing fishing, as 
recently reported by GFW6. 

There is a natural competition between governance and entrenched interests. For example, 
a challenge with limiting fishing zones is managing the displacement of fishing activities. Once 
the fishing fleets begin to regularly use a particular ocean space, moving them is challenging. 
Incumbent interests generally expect governing bodies to facilitate their continued activities 
post-displacement, which is challenging and slows policy implementation. Therein, there is a 
clear time imperative to implement Ocean Governance, particularly in areas where it is 
effectively absent. This has pertinence to the high-seas and in particular the Sargasso Sea. 

4.2 Improving governance of the high seas and the Sargasso Sea 

The points above hold true for Ocean Governance in general. However, there is an increasing 
focus on the high seas. 

 
Tripletail in Sargassum. Photo: Lindsay Martin 

There is a growing appetite for governance outside of EEZs. Problems that start outside EEZs 
can gradually migrate inside, both in terms of human activity, and its ecological 
consequences7. There is also a growing sense of inequity between those fishing inside and 
outside of EEZs. Very few nations have the vessels necessary for distant fish capture, activities 
which favour a minority of mainly developed nations, at the cost of global resource 
availability, and local opportunity8. 

 
5 Rowlands, Gwilym, Judith Brown, Bradley Soule, Pablo Trueba Boluda, and Alex D. Rogers. "Satellite surveillance of fishing vessel activity 
in the Ascension Island exclusive economic zone and marine protected area." Marine Policy 101 (2019): 39-50. 
6 GFW: Squid Fishing SE Pacific 2020-2021 Seasons 
7 And current modelling shows that damage to key high-seas ecosystems has as great an impact on coastal ecosystems as at the location 
8 Sumaila, U. R., V. W. Y. Lam, D. D. Miller, L. Teh, R. A. Watson, D. Zeller, W. W. L. Cheung et al. "Winners and losers in a world where the 
high seas are closed to fishing. Sci Rep 5: 8481." (2015). 
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Thus, a key issue today is understanding how to collectively govern the high seas. Since 2004 
the UN General Assembly has been discussing the issue of the conservation and sustainable 
use of biodiversity in Areas Beyond National Jurisdiction (ABNJ). In 2018 an 
Intergovernmental Conference (IGC) was established to negotiate a new international legally 
binding instrument on this issue. Whilst the negotiations have been interrupted by the COVID-
19 pandemic, the hope is that the new agreement can be finalised in 2022. 

 
Figure 3: Sargasso Sea Geographical Area of Collaboration 

There is a perception by many involved in those negotiations that while there are existing 
international organisations which already have the competence to deal with the conservation 
of the high seas, they have not yet taken on a proactive role in responding to modern 
challenges. These organisations include the International Maritime Organization (IMO), as 
well as the Regional Fisheries Management Organisations (RFMO) established pursuant to the 
United Nations Convention on the Law of the Sea (UNCLOS), including the International 
Seabed Authority (ISA) and the Straddling Fish Stocks Agreement in 1995. IMO competences 
include all vessels and oceans, but it has been slow to react to the increasingly obvious 
problems of vessel impact on high seas ecosystems. There is a general need at the 
international level to catalyse action, and to enable governance and policy decisions. 

One facet of enabling governance is the building of an evidence base of ecosystem issues, and 
credible solutions. This is what is currently being established for the Sargasso Sea, a two 
million square mile open ocean high seas ecosystem, and as such a very good case study for 
high seas governance. Central to this will be gathering and collating the data necessary to 
inform and justify any specific action or policy. The overarching method for this is to 
undertake an ecosystem analysis, which could underpin a scientific approach to ocean 
management and governance, and lead to actions such as defining Area Based Management 
Tools (ABMT), including possible Marine Protected Areas (MPA) underpinned by coherent 
Marine Spatial Planning (MSP). It should be noted that whilst most modern legal instruments 
mandate the use of a ‘precautionary’ model of governance, establishing policy early based on 
the risk of negative effect, in reality the burden of evidence appears high. 
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There are a range of outstanding issues that the Sargasso Sea Commission have identified 
that require prioritised governance responses. Fishing for tuna and tuna-like species is within 
the competence of the International Commission for the Conservation of Atlantic Tunas 
(ICCAT), and demersal stocks above 35°N are regulated by the Northwest Atlantic Fisheries 
Organisation (NAFO). However, fishing for other species is currently not regulated at all. Data 
from Global Fishing Watch (GFW) shows that fishing activity is increasing in the Sargasso Sea, 
but it is neither evident what is being fished, nor the impact of these activities on the 
ecosystem. The same is true for the prospect of future deep seabed mining in ABNJ. The ISA 
have granted exploration licenses for three prospective sites on the Mid-Atlantic ridge 
adjacent to the Sargasso Sea, but the consequences of potential activity on the surrounding 
ecosystem are not understood. Plumes from future mining activities could easily sweep 
through the area, causing unpredictable but significant damage9. 

 
Atlantic Bluefin Tuna. Photo: Richard Herrmann 

4.3 The relationship between policy, governance, and technology 

The relationship between governance and technology is not simple. There is an interplay 
whereby innovative technology helps to formulate and justify policy, as much as to implement 
governance. Ocean ecosystems, including human activities, are evolving and complex. Our 
growing ability to interpret, predict, and monitor these may enable highly nuanced 
governance that is aware of, and responsive to, the state of the ecosystem. For example, 
adjusting dynamically, based on the migration of fish stock, accommodating changing 
locations for spawning grounds, and optimising ecosystem regeneration. Ultimately this could 
lead to more targeted restrictions, based on a deeper scientific understanding, and 
substantially improved sensing and monitoring. 

Therein, whilst governance decisions (captured in a legal and regulatory framework) are a 
pre-requisite for the use of innovative solutions, demonstration of the art of the possible may 
be necessary to catalyse decision making. A challenge here is the investment case; advanced 
solutions, such as those built on AI, may be costly to develop, and only economically viable in 
the context of long-term services. However, their development may be necessary to explore 

 
9 Recent modelling of the Clarion Clipperton Fracture Zone in the equatorial Pacific indicates that plume dispersal from a single mining 
operation could cover 1000km over a year, see: Muñoz-Royo, Carlos, Thomas Peacock, Matthew H. Alford, Jerome A. Smith, Arnaud Le 
Boyer, Chinmay S. Kulkarni, Pierre FJ Lermusiaux et al. "Extent of impact of deep-sea nodule mining midwater plumes is influenced by 
sediment loading, turbulence and thresholds." Communications Earth & Environment 2, no. 1 (2021): 1-16. 
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the forms technologized governance can take, and to establish the evidence necessary to 
generate action. It is clear from past cases that the introduction of governance can spur wider 
investment (e.g., water treatment technologies to reverse eutrophication in the Black Sea, 
and the new innovative industry in ballast water treatment solutions born of GloBallast) but, 
until that point, there is a need to enable and de-risk technology realisation. 

Central to these matters is the need for data, both as a form of evidence, and an underpinning 
of AI/analytics technologies. Whatever the use, there is a need to maximise free and open 
access to data in and of itself. Data access and sharing is a policy-level issue involving public, 
private, and scientific stakeholders; currently data availability and utility varies significantly. 
Addressing this may be a pre-requisite to effective high-seas governance. The details of data 
utility will be discussed later, but there is a general lack of data standardisation within and 
across ocean industry and science domains, perhaps apart from satellite data. There is also a 
lack of consistent meta-data, tagging and organisation; even if relevant data already exists, 
discovery and retrieval can be extremely challenging. 

 
Photo: Cottonbro (Pexels) 

More fundamentally, there is a need to encourage data sharing and open science. Data 
transparency is a primary issue; many RFMOs, states, and private bodies are reluctant to 
share data, the justification for this is commercial confidentiality, and risk to competitive 
advantage. However, the view by many in the domain is that this data obfuscation prevents 
real scrutiny, and – for the global ocean commons – this is deeply unacceptable. Mechanisms 
to enshrine data transparency and sharing in high-seas agreements could be a major enabler 
for ecosystem analysis and sustainability. In the scientific domain there is no view that data 
is strategically withheld, rather there is a time and fiscal cost to data sharing, and a technical 
challenge. Agreeing platforms for data sharing, and incentivising organisations to make their 
data available, is a priority. In the context of science, a minimum standard of data sharing – 
perhaps following sector agreed guidelines – could be built into future grants to ensure the 
effort is made to share collected data. The cost of doing this should not be ignored, scientific 
organisations operate at the limits of their budgets, and a model of financing long-term data 
availability may be needed. 
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In the context of analysing and collecting data on the human and industrial uses of the oceans, 
there is no sense that the barriers are predominantly technical. Current capabilities for 
tracking and monitoring vessels are generally sufficient already, and AI analytics are being 
successfully used to determine if vessel operations are appropriate or not. There is a need to 
improve verification, validation, and ground truthing, especially in the context of unintuitive 
AI methods, and building trust in derived data products. Emerging technologies can improve 
this, and help with scalability, but again the core barrier is sharing of high-quality vessel 
tracking and catch data; this includes the meta-data necessary to ascertain quality, such as 
attribution, traceability, and quantified uncertainty – all of which are discussed further in 
Section 5. Therein, the crux might be to encourage a culture of transparent operations, with 
fairness of ocean use guaranteed through mutual visibility, at least insomuch as each 
stakeholder has confidence others are not misusing the ecosystem. Any steps towards this 
are to the benefit of governance, and transparency weakens the influence of entrenched 
interests on policy decisions. 

The challenge is not just data sharing; it is putting the right data and information in the right 
hands, enabling decision making and policy formulation. Understanding the form this needs 
to take, the enabling tools, and how to strengthen the translation of scientific advice to policy, 
is a priority challenge. Analytics and AI may play a key role in translating multivariate, layered, 
data into synthesised holistic metrics that are interpretable across decision-making and 
industry. Raw data, however well-structured or layered, lacks the interpretability necessary 
for wide use, particularly considering the inequity of knowledge in ocean science and data 
analysis. Data are fragments from which information and knowledge may be derived, it is the 
latter that should be presented by an accessible data product. The process of moving towards 
technologized, data-driven, governance needs to be road-mapped; exploiting the two-way 
relationship between technology and policy is an opportunity for transparency, objectivity, 
and better decision making. 

4.4 The role of technology in Ocean Governance 

Having considered the need for and the nature of Ocean Governance in the high seas, it is 
necessary to explore the specific role of technology. What it is that we are looking to achieve 
through Big Data, AI, and remote sensing solutions, and therein the technical requirements 
that prospective solutions must meet. 

The issues discussed in the previous theme on policy and technology are echoed here. There 
was a view from experts and end-users that we will need to work backwards from 
management and governance frameworks to specify what technical approaches are 
necessary, and then to understand constituent data requirements and innovative solutions 
for each case, necessitating the development of policy as a starting point. There was no 
consensus on this point, and irrespective of it, several technology ‘needs’ were apparent. 
Broadly the role of technology in ocean governance falls into four categories: 

• Establishing the evidence necessary to inform and justify policy decisions. 

• Enabling and implementing scientifically based management. 

• Implementing enforcement, and 

• Deepening understanding of ocean ecosystems – which is indirectly related to governance 
by improving the scientific foundation and developing models. 
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Some context is also provided by the Ocean Innovation Challenge, which is an accelerator for 
emerging solutions. It is funding innovation pertinent to the UN’s Fourteenth Sustainable 
Development Goal (SDG14), to conserve and sustainably use the oceans, seas, and marine 
resources for sustainable development. So far it has funded technology towards marine 
pollution reduction, and sustainable fisheries. 

Considering the first category; establishing evidence relies on gathering and collating data 
(across ecological, economic, scientific, and industrial domains), deriving from it a snapshot 
of the ecosystem and its activities, identifying key risks and issues (especially ecosystem 
threats, such as loss of biodiversity due to vessel traffic), and predicting its evolution with and 
without proposed governance. This relies on a suite of technologies including: the full gamut 
of earth-observation, surface, and sub-surface remote sensing capabilities for data gathering; 
the Big Data and data sharing implementations that allow for this multi-modal information to 
be stored, retrieved, and utilised; and data processing, analytics, and insights tools that make 
sense of the information. These analytic tools could include AI methods (of various sorts, from 
mature rules-based approaches to more nascent techniques such as reinforcement learning 
and generative AI), but these will likely be adjunct to existing, successful, statistical methods 
and models. 

 
Eel Leptocephali. Photo: Marko Freese 

The UNDP has a formalised methodology for implementing governance, which starts with a 
trans-boundary analysis covering much of the above. This process usually relies on historical 
data; whilst there have been some exceptions, such as a twelve-million-dollar oceanographic 
assessment in the Indian Ocean, typically the budget for formulating and justifying policy is 
not sufficient to enable new data gathering. Establishing governance directly depends on data 
first and foremost. 

The general view is that a lot of data exist, covering many different and subtle aspects of 
ecosystems; the sum knowledge from decades of marine research is substantial. However, 
much of these data are not operational. There are several barriers to operationalisation: 
much of the data lack standardisation (in multiple ways, including the temporal domain, 
depth regimes, ocean gridding, and data format) introducing challenges for interoperability; 
quality of data, in terms of resolution, coverage, and timespan, varies greatly; data certainty 
is not consistently expressed; and – perhaps most importantly – the right data sets can be 
difficult to find. For common ocean properties there can be unmanageably numerous data 
sets, each encumbered by choices specific to their data gathering process, and not necessarily 
suitable for all purposes. It is practically challenging for ocean managers, and non-data 
scientists, to understand what a good choice of data looks like for their purpose. This is doubly 
significant to developing nations, for whom there may be a substantial knowledge and 
expertise gap. 
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Addressing these problems is an acknowledged priority, with projects such as NASA’s 
COVERAGE10 currently looking to do so. Given the enormous variety of data sources and types 
associated with ocean ecosystems, and the great variety of stakeholders holding data, it is 
extremely unlikely that a single platform approach would be suited to this domain. There is a 
need to understand “what good looks like” for Big Data sharing and analysis services, seeking 
to maximise accessibility and broad usability, whilst providing an easy, low-cost way for data 
gatherers to open their data to public use (we articulate an idea of ‘good’ in Section 5.2.1). 

 
Humpback & Sargassum. Photo: Andrew Stevenson 

When it comes to implementing governance, one key outcome is Marine Spatial Planning 
(MSP). MSP is about documenting existing sea uses and ecosystem properties, developing a 
rich picture of all activities in the region and their interactions. With the variety of physical, 
biological, and human activities in an ocean space, this problem is manifestly complex. A 
complex system can be characterised as being ‘more than the sum of its parts’; practically this 
means that understanding each facet of an ecosystem in isolation is not sufficient to 
understand how it will evolve as a whole – with emergent properties developing due to the 
many unconstrained, interrelated, processes within it. Understanding and managing 
complexity is more than a Big Data problem; AI methods have proved their worth in 
interpreting and modelling complex systems in other domains (including climate physics, but 
also smart cities, transport networks, and more). Translating these approaches for ocean 
governance and MSP could improve ecosystem understanding, help to analyse what the most 
important data types and sources are, and – by translating layers of data into a holistic, 
predictive, overview – provide operational knowledge to end-users. Currently an MSP 
exercise for a small central American country, costs in the order of six-million-dollars; globally 
MSP would cost billions, and so the use of technologies to bring this cost barrier down is 
necessary. A deeper predictive understanding of ocean ecosystems may also enable more 
responsive and targeted decision making to the benefit of ecology and economics. 

 
10 The CEOS Ocean Variables Enabling Research and Applications for GEO (COVERAGE) initiative is a NASA-led research and development 
project and cross-cutting, collaborative effort within the Committee on Earth Observation Satellites (CEOS) that seeks to provide 
improved, more seamless access to inter-agency, multivariate satellite data spanning the four CEOS Ocean Virtual Constellations – sea 
surface temperature, ocean vector winds, ocean surface topography, and ocean color radiometry – in support of ocean science and 
marine resource management applications for societal benefit (https://coverage.ceos.org/overview/). 
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As much as the role and impact of Big Data and AI technologies may have on future Ocean 
Governance, the barrier to access must be considered carefully. Global problems require 
global solutions; candidate technologies must be scalable and have pathways towards 
ubiquitous use. In the context of data technologies neither of these barriers should be 
fundamental, but it is important that technology developers are as aware of these 
requirements, as of the technical challenge. From the perspective of catalysing better 
governance, developing new solutions is as important as reducing financial, capacity, and 
expertise barriers, and ideally all should be pursued in synergy. 

So far, this analysis has centred around data sharing and data analysis in one form or another. 
There is also a need for more, and better, sensing. Our understanding of ocean physics is 
increasingly competent, and it is characterised by parameters that are comparatively easy to 
sense, with ocean-surface (and shallow sub-surface) characteristics being observable from 
space, and deep-water observations requiring in-situ sub-surface sensors. However, ocean 
biology is much harder to sense, model, and understand. As is the influence of the physical 
environment on the biological, such as the effects of climate change on fish stocks and 
migration. Ocean and climate physics are not entirely understood either. For example, 
understanding the fronts, gradients, and air-sea coupling that contribute to hurricane 
formation is not solved. Furthermore, human activities such as seabed mining occur in areas 
we know little about, with consequences (ecological and physical) that we do not fully 
understand. Therein, the data needed to understand ocean ecosystems is fundamentally ‘4D’ 
in nature; requiring coverage of the oceans through the water column, over long timespans 
to understand eco-system change and behaviour, but also at sufficient resolution to identify 
specific activities (e.g., illegal fishing). Improving our understanding will require more sensing, 
better sensing, and improved analytics – meeting data needs would require a significant 
enhancement to current capabilities. 

 
Sargassum. Photo: JP Rouja 

Ultimately, a system-of-systems encompassing improving data gathering, communications, 
sharing, processing, and analysis, will be to the benefit of any of the aforementioned 
challenges, and most certainly improve and lower the barrier of entry, to Ocean Governance. 
However, the path there will be subject to fiscal constraints, and necessitate prioritisation. 
The most pressing need is ubiquitous data-sharing and standardisation, providing utility to 
the ocean managers and non-expert end-users, not just data scientists. Therein, Big Data 
solutions should be a sector priority. 
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4.5 Examples of good governance 

In the interviews and questionnaire responses several examples of ‘good’ ocean governance 
were highlighted as case studies of what can be achieved, they are presented here to provide 
some context, and shed light on the relationship between policy decision and investment in 
solution development. 

A pertinent example of a technology driven solution for illegal fishing can be seen in the ocean 
space around the Ascension Islands. Satellite surveillance and analytics from Ocean Mind 
were used to help monitor fishing activities. On the enforcement side, very high fines were 
implemented for those who fished illegally. Knowledge of this system was pro-actively 
promoted; once the fishing community understood that a capable monitoring system was in 
place their behaviour changed and illegal fishing was substantially reduced. Furthermore, the 
implementation of better monitoring enabled the detection of a different problem; vessels 
transporting dangerous cargo. Rowlands et al, 2018 details this case11. 

 
Figure 4: Ascension Island EEZ, Southern-Atlantic Ocean. 

In the former case extant technology was applied to test its impact; more often policy is set, 
and technology then develops to meet new demands. An example of this can be seen in the 
‘The GloBallast Story’. A primary cause of the migration of invasive species to new waters has 
been attributed to the ballast water of long-distance vessels. These waters carry species 
across the oceans, at times resulting in transference to new waters where they destructively 
thrive. To combat this a global convention on ballast water was negotiated, adopted in 2007, 
and put into force in 2017. It provides technically specific stipulations on how clean ballast 
water must be to avoid transference of species. This clear technical guidance combined with 
enforcement methods has led to substantial growth in ballast water cleaning technologies, 
which are now widely operational. The drive for competitive compliance solutions has 
generated a $40bn industry. Whilst this is neither data nor AI, it is an example of successful 
technology-oriented governance, in this case driving innovation. 

 
11 Rowlands, Gwilym, Judith Brown, Bradley Soule, Pablo Trueba Boluda, and Alex D. Rogers. "Satellite surveillance of fishing vessel activity 
in the Ascension Island exclusive economic zone and marine protected area." Marine Policy 101 (2019): 39-50. 
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Similarly, policy driving innovative solutions can be seen in efforts made to reverse the 
eutrophication of the Black Sea. Policy on water treatment, combined with innovation funds, 
led to a new burgeoning industry. This provided substantial economic benefit to the region, 
whilst addressing the key issue of eutrophication. 

Technology aside, several agreements are held up as examples of successful Ocean 
Governance and may inform governance in the high seas. In interviews, the OSPAR 
convention was most often cited as an example of successful governance, providing marine 
protection and ocean sustainability through regulatory agreement between ocean bordering 
states. The Convention on the Conservation of Antarctic Marine Living Resources (CCAMLR) 
is similarly seen to be effective in regulating fishing and has established key MPAs. 

The Western and Central Pacific Fishing Convention (WCPFC) provides a good example of a 
multi-country regulatory framework that served to operationalise the UN Straddling Stocks 
Agreement in the western and central Pacific. It has been highly successful, reducing 
overfishing of all four tuna stocks in this area (representing over half of global tuna yields) to 
6%, resulting in complete sustainability for these fishing stocks. Practically, this regulation was 
enhanced and enforced via technologies: Vessel Monitoring Systems (VMS) and on-board 
observations systems were mandated for all vessels fishing in the waters. With these 
monitoring capabilities available, the vessel day scheme was implemented, auctioning off 
daily fishing rights – economically enhancing the participating states, a boon particularly 
appreciated by the regional SIDS. Here governance was made achievable through technology 
that dramatically increased capacity for compliance, monitoring, and enforcement. 

Most examples of successful regulation have been achieved top-down. Partnerships in 
Environmental Management for the Seas of East Asia (PEMSEA) is a counter example, which 
was developed bottom-up, and involved agreement across east Asian states. Its signature 
result has been the introduction of Integrated Coastal Management (ICM) with cross-sectoral 
planning. By developing the methodologies and tools to do this, they have scaled up ICM in 
east Asia from close to none in the 1990s, to covering about 40% of the east Asian coast today. 
Governance and regulatory frameworks have been put in place to achieve this, generally seen 
at municipal and provincial levels. Implementation of this has involved Marine Spatial 
Planning, the cost of which has largely been taken on by local governments; undoubtedly 
there is scope for future Big Data sharing platforms and intelligent analytics to improve 
capability and drive cost down. 
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5 Technology for Ocean Governance 

There are several key roles for technology in creating and sustaining good Ocean Governance. 
This involves the collection and analysis of multi-source data, to produce evidence to inform 
Ocean Governance policy makers of where and how to act. Data are also used to inform and 
direct enforcement activities and can subsequently be used to measure the effectiveness or 
otherwise of the governance measures put in place – this is a technology-enabled data-cycle. 

 
Figure 5: Technology-enabled data-cycle to create and sustain good Ocean Governance 

5.1 Data Collection, Remote Sensing & Enforcement Technologies 

5.1.1 The data journey so far 

Data gathering in the world’s seas and oceans has been ongoing for centuries. The first 
recorded scientific data collection in the Sargasso Sea is from the middle of the 19th Century 
and it has continued ever since. With the advent of steam ships and the industrial revolution, 
maritime routing and access to the Sargasso Sea has increased. Mariners are no longer limited 
by the vagaries of the complex maritime environment, particularly reliable wind, which was 
historically problematic in transiting the Sargasso Sea. The way in which data on 
environmental, biological, and human activity is collected has also changed considerably. 
Once only possible by the physical presence of an observer on a vessel, today technology-
enabled remote sensing, both planet- (land and sea) and space-based, make it possible for a 
multitude of data relating to many differing characteristics and activities, environmental, 
biological, and human, to be collected 365-days-a-year, regardless of location, time of day or 
weather conditions. 

The most recent large-scale scientific examination of the Sargasso Sea took place a decade 
ago which created an impressive amount of evidence relating to the existing ecosystem and 
the potential impact of human activity. The enhancements in data collection since then, 
specifically but not exclusively remote space-based sensors, alongside considerable advances 
in computing power and AI, (both rules-based Machine Learning, and the recently emerging 
Deep Learning, generative AI) mean the sheer scale of evidence available for policy makers to 
consider has increased manifold. 
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5.1.2 Technology to measure and address human-behaviour 

Data collection relating to the environment and to biological activity does remain extremely 
challenging, but it does not have to deal with the purposeful obfuscation of certain types of 
activity, practically unique to the human species. Whilst fish and other sea creatures do seek 
to hide their whereabouts, they do this to evade likely predators, driven by a Darwinian 
instinct to avoid being eaten. This is contrary to the human predilection of doing so to gain 
unfair advantage and achieve some form of personal gain regardless of others, and with no 
thought for the morality and future sustainability of their actions. Without delving into an 
overly philosophical discussion at this point, it is worth highlighting the ever-increasing 
positive role technology can play in this seemingly unending battle against the human wish 
to operate in the shadows or darkness of the world’s oceans, to amass ill-gotten gains. 

5.1.3 The Electromagnetic Spectrum in remote sensing 

The electromagnetic (EM) spectrum has played a vital and increasingly important part in quite 
literally, shining a light on human maritime activity. The advent of Radar in the Second World 
War and the considerable tactical, operational and safety benefits it provides, both in the air 
and maritime environments are well-documented. More recently, a different part of the EM 
spectrum has been used to further improve the safety of maritime shipping; radio-borne data 
from the Automatic Identification System (AIS) is now mandated to be fitted to ships over 300 
tonnes displacement to allow suitable safe separation from each other. But this equipment 
(like VMS mandated for industrial fishing fleets by some nations), suffers from 2 key 
weaknesses when in the hands of operators engaged in illicit activities; it can be modified to 
show incorrect information (so-called spoofing), or it can simply be turned off (creating so-
called “dark-vessels”). Both these practices can in themselves be key indicators to law 
enforcement organisations of potential illegal activity, but it is just an indicator, it is not 
evidence. 

5.1.4 Space-based sensors 

5.1.4.1 Essential Ocean Variables. 

A key contribution of satellite remote sensing is on the routine, broad-scale monitoring of 
essential ocean variables such as sea surface temperature, surface salinity, ocean surface 
topography, ocean primary production, sea ice extent, water mass volume and related, 
derived variables enabling identification of dynamic oceanographic features, e.g., eddies, 
fronts, etc., and long-term trends e.g., global mean sea level rise. Much of these data are 
assimilated operationally into numerical weather and ocean models and are also the basis of 
climate modelling work. 

   
Photos: Pixabay (Pexels) 
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5.1.4.2 Vessel Monitoring. 

AIS was designed as a short-range information sharing platform, but it is now also mounted 
on numerous communications satellites extending its reach globally. This adds to other 
rapidly improving space-based remote sensing capabilities which are making a real difference 
today. Space was once the unique domain of the security and defence organisations of 
developed, powerful and wealthy nations, but now highly detailed, time-sensitive data from 
a multitude of space-based sensors can be collected and sold, or simply bought, by 
commercial entities. As a result, when a vessel’s operator decides to turn-off their AIS or VMS 
transmitter to hide their whereabouts and activity, there are now an array of other sensors 
already on hand to continue to illuminate the situation – “sea blindness” can be turned into 
“sea vision”. Satellite-based Electro-optical (EO) cameras, the Visible Infrared Imaging 
Radiometer Suite (VIIRS) and Synthetic Aperture Radar (SAR) arrays now produce very high-
definition imagery of ever smaller sized vessels. With ever-reducing revisit times measured in 
hours not days, enabled by more complex but more sustainable non-polar orbits that keep 
the satellite in permanent solar view, thus providing constant power to the onboard batteries, 
whilst also allowing satellite taskers to concentrate their sensor time on areas of the oceans 
with the most human activity, these capability improvements make even the furthest oceans 
a difficult place to navigate completely unseen. 

5.1.4.3 Specific Emitter Monitoring 

But even SAR, EO and VIIRS are not omniscient. Whilst SAR is not affected as much as EO and 
VIIRS by poor weather conditions and time of day, it still does not provide the incontrovertible 
evidence often necessary to move to a court of law. EO can provide this in the best weather 
conditions and satellite orientation, but recently a relatively old technology that is becoming 
more widely available is EM frequency transmitter fingerprinting (in military circles this is 
referred to as ELINT – electronic intelligence). Put simply, each transmitter on a vessel (e.g., 
radar for navigation, V/UHF radio for ship-to-ship communications, satellite telephone for 
speaking to vessel owners/accessing the internet) has a unique frequency fingerprint, 
meaning that whenever or wherever it is turned on, if it is “in view” of a suitably configured 
detector mounted on a satellite, its position can potentially be determined. This sort of 
system can also be terrestrially, or aircraft/drone based, although this will clearly reduce the 
range of detection to vessels operating in coastal waters or perhaps to EEZ boundaries; it will 
not cover the more distant high seas and ABNJs. On its own this fingerprint detail might not 
be sufficient, but when fused with multi-source data from other planet- and space-based 
sensors, a complete and compelling evidential picture can be created and presented to 
appropriate law-enforcement agencies for further action. As mentioned earlier, and although 
ELINT was not used in this specific case, when the Ascension Island fisherfolk who were 
engaged in illegal fishing became aware that certain monitoring technology and capabilities 
were now available in their region, they changed their illicit behaviour. 

5.1.5 Underwater remote sensing and human activity 

Data gathering of the oceans is not only carried out by space-based sensors. To fully 
understand the oceans, data must be gathered from within; put simply, sensors must “get 
their feet wet”. Due to the physical characteristics of water, the capability to monitor using 
EM energy is limited to the space above, on, or just slightly below the sea surface. But this 
limitation can be overcome by exploiting the unique characteristics of sound travelling in 
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water. Sound is particularly useful for tracking and understanding biological activity and other 
natural undersea phenomena, but it is also having an ever-increasing role in the tracking and 
recording of human activity – for example the use of hydrophones to listen for human-related 
insonification, either accidental or deliberate, which can have such a detrimental impact on 
marine life. But, where the near-ubiquitous nature of space-based platforms can be used to 
illuminate the underwater domain, is in the receipt and retransmission of the wealth of 
underwater data being collected by these sub-surface arrays. The use of communication 
satellites to relay data from remote oceans to remote laboratories, especially when near-real 
time transmission is needed, is fundamental, thus allowing this wealth of data to contribute 
to providing the evidence necessary to support good Ocean Governance. 

5.1.6 In- and On-ocean remote sensing and data gathering of non-human activity 

In-ocean remote sensing tools that measure physical factors are much more effective than 
those focused on measuring biological factors; to compound this challenge there are also 
orders of magnitude greater variability in biological sensing. Furthermore, biology and climate 
physics have additional but potentially very different sensing requirements to those for 
monitoring and managing human activities. Basically, understanding the biology and the 
underwater sensing picture, is more challenging than measuring and understanding human 
activities. More positively, from our research it appears that contemporary remote sensing 
capabilities are already highly capable, but they are constrained by the lack of commercial 
demand, and the practical challenges of monitoring vast ocean spaces. The problem of in-
ocean remote sensing can be broken down into three distinct themes: understanding the 
physical and biological processes in the ocean – i.e., what is happening; monitoring natural 
activities, and monitoring human activities. 

 
Bermuda Atlantic Time-series Study. Photo: Bermuda Institute of Ocean Sciences 

Alongside the need for sufficient monitoring to understand what human activities are taking 
place, and how they are affecting the ocean, there is also a need to monitor the essential 
ocean variables. As mentioned above, satellite-based sensors can detect and measure surface 
information such as: temperature; roughness; salinity; acidification; and human activity, but 
this is not sufficient to understand the complex physical, biological, and human processes 
taking place within the entire water column and on and under the seabed. Sub-surface 
observation systems can look at essential ocean physical and bio-geochemical variables such 
as chlorophyll and turbidity, and biological variables such as, where life is, what lives where, 
as well as human activities. Sub-surface data is crucial, but not yet sufficiently available. 
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Passive ocean sensors are improving and moving towards reducing the ecological and 
environmental costs of their presence. Passive drifters, low energy gliders and sail drones, as 
well as high-altitude, very long endurance airborne drones are much less carbon-heavy assets 
that also do not require as much care and maintenance. Furthermore, so-called “platforms of 
opportunity”, e.g., fishing vessels, cargo vessels, leisure craft and ferries moving through the 
oceans as part of their normal business, could be used to gather a wealth of data, possibly 
regulated in some way to “pay-back” their carbon usage. It is highly likely that many maritime 
users would be willing to do this, but once again, the requirement to decide data 
standardisation and types well in advance needs addressing. There are several ongoing 
programmes that are seeking to increase this type of “non-human” ocean observance such 
as The Global Ocean Observing System12, the Global Ocean Acidification Observing Network13 
and Go-Ship14. 

 
NOAA and Saildrone Inc. are piloting 5 saildrones in the Atlantic Ocean to gather data around the clock to 
help understand the physical processes of hurricanes. Photo: Saildrone Inc. 

5.1.7 Affordability vs Cost Effectiveness 

It must be noted, that much of this data does remain expensive and beyond the budgets of 
many small or developing nations, but it is becoming more affordable. Arguably, when you 
consider the long-term detrimental impact of much of the maritime human activity and the 
costs of recovery and regeneration, a case could easily be made for buying data to build a 
case for good Ocean Governance, rather than dealing with the downstream impacts, is much 
more cost-effective. Affordability of data is perhaps a challenge that lends itself to regional, 
inter-governmental, international, or even philanthropic cooperative solutions to solve. 

  

 
12 Global Ocean Observing System 
13 Global Ocean Acidification Observing Network 
14 Go-Ship 
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5.2 Big Data, AI and Analytics 

5.2.1 The Needs for Big Data Solutions 

As we have discussed, a consistent barrier to justifying, evidencing, and implementing ocean 
governance is the availability of evidential data and analytics. Establishing a Big Data picture 
is part of building the evidence necessary to justify policy; as shall be discussed, this is 
currently challenging and costly. There are a variety of needs for, and ancillary to, using Big 
Data in this domain, broadly they centre around data sharing, availability, quality, 
interoperability, and utility. 

These needs are as technical as they are human; it is crucially important that Big Data is not 
seen as the unique domain of the data analyst, computer scientist, or technical practitioner. 
Whilst these may architect and implement solutions, the end-user is necessarily the Ocean 
Governance community, with varied specialisations, a focus on ocean management and 
policy, and ranging access to tertiary knowledge and expertise (from nations at the forefront 
of technologization, to SIDS and other developing nations). There is a need for technical 
development in this domain, to better assist establishing governance in the Sargasso Sea or 
elsewhere, but a sufficient solution must be ubiquitous, intuitive, and accessible. It is 
incumbent on those developing solutions to minimise barriers to use. Therein, it is also 
important that the Ocean Governance community is an active stakeholder in all ongoing 
development, ensuring that their needs are well understood and well addressed – this can 
already be seen to be the case in the relationship between the Sargasso Sea Commission and 
NASA/JPL with respect to their COVERAGE project. 

  
Photos: Markus Spiske (Pexels) 

Addressing these needs towards enabling Big Data for Ocean Governance is a first order 
priority and is a pre-requisite to many data-hungry AI methods and analytics. It is also a pre-
requisite to us understanding the state-of-play – earlier we posited that it is a challenge for 
ocean managers to select the right data for their needs from the vast variety and quantity 
available. More abstractly, the challenge is understanding what ‘good’ looks like for data, for 
a specific purpose. Sister to this is knowing how much of this is what we already have, and 
are collecting, and where we need to improve, or add to, data collection. 

These questions can only be addressed in knowledge of the whole; the data needs to be 
catalogued and shared. Furthermore, it must be comparable, invoking a need for 
standardisation across disciplines, sub-sectors, and collection methods covering at least: 
meta-data; formats; metrics of certainty; temporal information; depth regimes; and ocean 
spatialisation/gridding. It is only when the whole can be seen, and parts measured against 
one another, that we can understand – through human processes and analytic algorithms – 
the strengths and shortcomings of what is available. 
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Standardisation is also a pathway towards data interoperability and compatibility. Systems 
utilising Big Data for evidence, governance, and monitoring, must not be brittle to technical 
change. As ecosystems and human activities evolve, along with our understanding, such 
systems will need more and different varieties of data, they may need better data in specific 
cases (or, perhaps, be able to make cost savings and do with less in others), data from new 
and changing sensors, and data from different providers as projects and businesses change. 
Unless its purpose is highly specific a rigid, brittle, data system is unlikely to be long lived. 
Standardisation, with a focus on data findability, interoperability, compatibility, shareability, 
traceability, and comparability, is a necessary enabler for the type of Big Data solutions that 
are needed. Many of these points have been formalised, in general, under the FAIR data 
principles15, which could be applied directly to ocean data, and particularly to data collected 
on the high seas. 

   
Photos: Mati Mango & Nátalie Rodrigues (Pexels) 

The technical needs associated with Big Data also deserve mention, typically described as 
volume, variety, veracity, and velocity. The volume of data in Big Data analytics is substantial, 
this requires storage, transfer, processing, and access; technically, these are solved issues, 
however, established solutions will require implementation (in the form of data platforms) 
and maintaining data services is a continuous overhead cost. Data variety is crucial to 
understanding complex systems. It is through the ‘multi-dimensional’ analysis of physical, 
biological, and human processes that ecosystem evolution can be interpreted. At the 
theoretical or causal levels ocean ecosystems are far from fully understood. Therein, variety 
is doubly important since the most important sources of data (and, in particular, combinations 
of data) may not be evident a priori, or when analysed in isolation. Collecting a sufficient 
variety of data is challenging in its own right, introducing issues of data interoperability, and 
adding to issues of data volume, especially when considered over large timespans and with 
high resolutions. Velocity pertains to (near) real-time applications, and the demand for new 
data to be accessible with low latency; the challenges associated with this are specific to data 
collection methods (non-geostationary satellite observation, for example, can have an 
inherent latency between repeat measurements based on orbital trajectory), data format, 
pre-processing demands, and technical architecture. Lastly, data veracity is considered in 
more detail in Section 5.2.3, but for any new source or type of data, or data analytics system, 
ground truthing and validation is required, and quantification of uncertainty is necessary. 
Furthermore, the propagation of uncertainty through analysis and into synthesised metrics 
must be predictable. Issues of trust and veracity are also key when considering the use of AI-
based and unsupervised systems. 

 
15 https://www.go-fair.org/fair-principles/. We also note that NASA has been a proponent of FAIR data principles, in general of Open 
Source and Open Science data policies. NASA earth data has been free of charge and accessible to researchers, for decades. However, the 
challenge of maintaining that policy is increasing as data sets grow, and interoperability becomes more of an issue. 



PBO00443 / P03733 / AVCH-00xxx – 2021-12-21 
Governance of High Seas Ecosystems: Big Data & AI/Version 1.1 

30 

Practically, using Big Data and meeting these needs requires data sharing and analytics 
platforms. At the simplest level, such platforms serve two purposes. The first is to connect 
end-users with data, translating their needs from the context of their domain to one of data, 
and intelligently highlighting data that is fit for their purposes. The second – but of equal 
importance – is to facilitate data sharing. Standardising, normalising, formatting, and sharing 
data is time consuming and costly. Whilst we may advocate for open data, the reality is this 
task has costs and associated technical challenges, particularly if the shared data is to have 
sufficient visibility for use. A good data sharing platform would seek to handle as much of this 
as possible, also for its own benefit of guaranteeing consistency across data. Architecting an 
ideal data sharing platform is a task unto itself, and there are numerous organisations either 
doing this internally, or facilitating data sharing more broadly (e.g., NASA and Global Fishing 
Watch). The idea of a singular data-sharing platform can be attractive but considering data 
multi-use across domains ranging from ocean biology to climate science, to economics, and 
to governance, a multitude of interoperable distributed platforms is likely ideal. To prevent 
new issues of fragmentation, it is important that such platforms could each access all the 
openly available data (and avoid per-platform data duplication, which incurs costs and causes 
issues), but be designed to best support their target sectors. 

 
Northern elephant seal. Photo: NOAA Fisheries 

The elephant in the room is how one incentivises data sharing. Traceability plays a key part in 
this; relating use and benefit to those who provide data inherently increases recognition. For 
private organisations this allows them to demonstrate their contribution to addressing issues 
of global importance, such as ecology. For scientists and researchers, it is of even greater 
importance, as it allows them to demonstrate the benefit of their research – necessary to 
establish continued funding. One might also consider ways to mandate data sharing. For 
example, as a condition in grants of funds, or in high seas policy. 
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There is a significant human element to matters of data sharing, constituting a change in 
culture. A popular soundbite is that data are the most valuable resource in the world; this 
encourages the notion that data are a rivalry resource, and that sharing is to one’s own 
competitive detriment. For all but the largest data collectors, this simplistic notion has been 
shown to be untrue16. The effectiveness of data to provide insights in complex domains 
requires not only data quantity, but substantial variety. This can usually only be realised in 
the combination of data from numerous sources; data are generally non-rivalry, and sharing 
is to the mutual benefit of the sector. Establishing this shift in culture is a challenge and is an 
issue of trust to share. It may be the case that this is best catalysed by independent and 
trusted organisations that can act as data masters, facilitating sharing whilst protecting the 
confidentiality of data partners – whether private organisations or nation states. 

We may summarise these points into some top-level technical and non-technical 
requirements for Big Data for Ocean Governance, which may help solution engineering by the 
development community. 

Technical requirements: 

• Understanding ecosystems requires Big Data constituting earth observation, surface, and 
sub-surface data sources, with high volumes of data over long timespans, often high-
resolution, and of varied modalities. Therein, free, and open data sharing is a priority need. 

• This requires the standardisation and integration of data across communities, particularly 
datasets from the ocean physics, geo/biochemistry, ocean biology, and human activity 
monitoring communities. At a minimum, the need for standardisation includes: meta-data, 
formats, protocols, metrics of certainty, temporal information, depth regimes, and ocean 
spatialisation/gridding. Adopting FAIR data principles may be an effective path towards 
this. 

• Data sharing platforms are needed to facilitate both data access and data sharing; reducing 
barriers at both ends. Ideally data sharing platforms should help end-users understand 
what data are right for their needs, translating domain-expertise to data requirements. 
Similarly, they should handle as much of the data assimilation process as possible, reducing 
the cost and challenge of data sharing, and improving consistency across datasets. 

• Due to the different needs across ocean sectors, and the multi-disciplinary use of data, a 
distributed but interoperable model of data platforms is likely needed. Data replication 
should be minimised to avoid excess costs and errors from duplication, necessitating 
common access protocols and easy searchability. 

• Data access and latency requirements differ based on intended use. Ocean ecosystem 
analysis is likely to require long-term data of many modalities. Conversely, response and 
enforcement may require (near) real-time data and analytics. This places requirements on 
data sharing architectures, as well as on data-collection. 

• We need to better understand what ‘good’ looks like for ocean data, especially in terms of 
granularity/resolution. Both nuanced governance and ecological analysis may require data 
of a greater temporal and spatial resolution than conventionally captured; a baseline for 
analytics needs to be established through testing. Furthermore, significant quantities of 
data already exist, and are being actively collected; we must analyse where value can be 
added. 

 
16 Jones, Charles I., and Christopher Tonetti. "Nonrivalry and the Economics of Data." American Economic Review 110, no. 9 (2020): 2819-
58.  
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Human requirements: 

• The foremost requirement for any Big Data solution is to be interpretable to the end-user 
community. It must reduce barriers and costs to technology access, enable ubiquity, and 
help the end-user access the ‘right’ data for their needs. For Ocean Governance, this means 
that Big Data systems must provide actionable information and knowledge to ocean 
managers. 

• Establishing free and open data sharing is as much a technical challenge as it is a human 
one. Data sharing must be encouraged and incentivised, there are several ways this could 
be achieved: 

o Specific positive recognition of those who share data. Particularly towards helping 
scientists, researchers, and NGOs demonstrate the benefit of their data gathering 
activities to secure future funding. 

o Establishing methods of trusted data sharing, involving respected, neutral, 
organisations as data masters, reducing the perception that data sharing may reduce 
individual competitive advantage, or cause risks to security. 

o Better communicating the need for diverse data, and the non-rivalry nature of data. 
o Mandating data sharing as an output of research grants and introducing policy towards 

high seas data sharing. 

• The cost of sharing and managing data should not be ignored, and focus should be placed 
equally on facilitating data sharing and data access. 

5.2.2 Artificial Intelligence for Ocean Governance 

Computing power, quantity of available data, and data gathering have historically been 
barriers to both Big Data analysis methods and Artificial Intelligence based approaches. It is 
only relatively recently, with modern computational capabilities and data infrastructures, that 
these approaches have become viable. They present a natural evolutionary step in data 
analysis, modelling, and prediction – and as is already the case in many sectors, it is likely that 
they will come to underpin the methods used for ocean ecosystems analysis, and therein 
evidencing and implementing Ocean Governance. 

  
Photos: Tara Winstead (Pexels)  
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Artificial Intelligence is a broad term, covering a wide range of methods, algorithms, and 
implementations, each with varying capability and maturity. At the simplest level, AI methods 
can be used to automate statistical data analysis processes, intelligently responding to 
context based on pre-defined rules, and applying logically straightforward (but perhaps 
algorithmically advanced) strategies to self-improve analytic accuracy or performance – 
typically by comparing predictions to reality, and optimising based on tuneable parameters. 
This can provide unique advantage in terms of speed and scalability, necessary for analysing 
oceans of data as opposed to constrained test-cases, but such implementations tend not to 
provide unfamiliar capabilities. 

At the simplest level, using AI in this way, typically for pattern recognition, pre-disposes that 
we know what patterns to look for, and in which data to find them. The weakness of rules-
based approaches is that they demand a priori understanding. For human observation tasks 
this can be sufficient, especially in flagging the ‘negative case’ – unexpected behaviour. This 
has use from detection of potential illegal activity to emergency response and rescue. 
Furthermore, the more policy specifies or constrains accepted behaviour, the easier it 
becomes to automatically identify deviations from it. A concrete example would be using AI 
to recognise if vessels deviate from shipping lanes/expected routes, or if they enter MPAs. 

One might fairly ask, “what about that is ‘intelligent’?” The answer: potentially various 
aspects, each to varying degrees. The superficial task of applying rules to information can fall 
under the umbrella of AI, particularly when it has ways to self-improve or optimise. Logically, 
this can be seen as a way of capturing knowledge and expertise in algorithmic form, towards 
automation and scalability. In our example this might be codifying the knowledge applied, 
and tests made, by a human expert operator to understand if a vessel’s activities are 
potentially illegal. This is the most rudimentary form of AI, but it is powerful, allowing analysis 
(of Big Data) to be scaled up beyond what is practical for human operators, allowing a greater 
variety of data to be considered where analysis is complicated, and can improve technical 
equity – presenting a cost-effective path for small and developing nations to harness the 
forefront of expertise. Therein, rules-based approaches are mainly used to assemble 
unambiguous data, based on a priori understanding, and automatically translate that data to 
knowledge, tailored to decision making or response. 

Unfortunately, data are not necessarily unambiguous or machine interpretable. Many aspects 
of data pre-processing, normalisation, and standardisation can be automated through rules-
based approaches, for which there are mature methods in data-driven technology sectors, 
needing only translation to the ocean domain. However, machine-interpretability is not so 
straightforward. A pillar of recent AI development has been image and video recognition and 
enhancement; making evidence and footage that is naturally interpretable to humans also 
interpretable to machines and using AI techniques to reconstruct ‘clear’ images from ones 
that are somehow obscure17. This can be generalised to data enhancement and analysis; to 
an algorithm an image of a human face is not deeply different to that of a vessel, or a weather 
formation, nor from an ‘image’ of an ocean ecosystem (perhaps not in colours and intensities 
of light, but some other coherent, spatially spanning, sets of data). 

  

 
17 From resolution enhancement, to denoising, optical image correction, colourisation (e.g., of historical black and white footage), to other 
forms of reconstruction – all of which are utilising a complex deep knowledge of how ’real’ images can look to enhance and repair source 
images. 
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Returning to our example, before rules can be applied to check if a vessel’s behaviour is illegal, 
an AI system would first need to identify a vessel, its type, location, and trajectory, based on 
e.g., satellite imagery. AI capable of this is substantially more advanced than rules-based 
methods, and truly self-learning. They are built on neural nets and deep learning approaches, 
and to be effective must be trained by providing the self-learning model many images that 
have been accurately classified already18, and allowing it to iterate until it can automatically, 
successfully, identify and reconstruct features. There are several examples of research into 
image analysis-based vessel identification and behaviour prediction19. AI image recognition is 
also being used to actively monitor fish catch, being able to identify species and length in real-
time through a stereo camera configuration on the trawl rig of ships, with a view to reducing 
bycatch20 (and very possibly contributing to enforcement). Furthermore, AI reconstruction 
tools are also being developed to improve ocean surface temperature data extraction from 
earth observation21; improving data retrieval through cloud cover, and with the further 
potential to retrospectively enhance datasets. So far, this discussion has centred around using 
AI to perform analysis that humans are capable of, through both straightforward and 
advanced methods. Before we go further, it should also be noted that there are many 
established methods in ocean analysis, such as statistical approaches for fisheries stock 
assessment, that have proven themselves sufficient. The impulse to use new methods for 
their own sake (or, similarly, to generate data for its own sake) should be resisted; AI (and any 
other analytic method enabled by Big Data) is an addition to the existing set of tools, neither 
an implicit replacement for current methods, nor a ‘silver bullet’ for ecosystem analysis. With 
that in mind, let us discuss how AI approaches can move our knowledge and expertise 
forward, rather than relying on it. The use of AI becomes more interesting when used to 
analyse complex, highly correlated, systems. With the mixture of climatic, physical, biological, 
and human properties, oceans and sea-basins almost certainly exhibit complexity. This is 
more than a descriptive term, it specifically implies that an (eco)system must be described as 
a whole, exhibiting emergent properties that are not evident from considering each part and 
process in isolation. This makes analysis challenging for two reasons: firstly, causal 
relationships are not necessarily evident, with many small factors contributing to an outcome 
of scale, but no singular, dominant, cause; secondly, complex systems can be unstable, 
making predictive analysis, and scenario analysis, challenging. 

  

 
18 Developing a sufficient training set is a great challenge in its own right. A significant approach to this has been through crowdsourcing 
image identification, whether through quasi-mandatory approaches such as Google’s Captcha, or through citizen science and positive 
engagement, such as the Zooniverse project (https://www.zooniverse.org/). 
19 Literature on this topic is growing, but for some contemporary examples see: 
Verbancsics, Phillip, and Josh Harguess. "Image classification using generative neuro evolution for deep learning." In 2015 IEEE winter 
conference on applications of computer vision, pp. 488-493. IEEE, 2015. 
Wang, Senjie, and Zhengwei He. "A prediction model of vessel trajectory based on generative adversarial network." The Journal of 
Navigation (2021): 1-11. 
Guo, Weiya, Xuezhi Xia, and Wang Xiaofei. "A remote sensing ship recognition method based on dynamic probability generative model." 
Expert systems with applications 41, no. 14 (2014): 6446-6458. 
Li, Dan, Hang Liu, and See-Kiong Ng. "VC-GAN: Classifying Vessel Types by Maritime Trajectories using Generative Adversarial Networks." 
In 2020 IEEE 32nd International Conference on Tools with Artificial Intelligence (ICTAI), pp. 923-928. IEEE, 2020. 
20 For example, see the experiments of Garcia, et al (2020): Garcia, Rafael, Ricard Prados, Josep Quintana, Alexander Tempelaar, Nuno 
Gracias, Shale Rosen, Håvard Vågstøl, and Kristoffer Løvall. "Automatic segmentation of fish using deep learning with application to fish 
size measurement." ICES Journal of Marine Science 77, no. 4 (2020): 1354-1366. 
21 A complete review of application of AI methods to earth observation far exceeds the scope of this report. However, Lary, et al (2018) 
provides numerous good examples of what has been achieved; although the paper is not focused on ocean science, the specific example 
of characterising pelagic habitats within coastal waters is provided. See: Lary, David J., Gebreab K. Zewdie, Xun Liu, Daji Wu, Estelle 
Levetin, Rebecca J. Allee, Nabin Malakar et al. "Machine learning applications for earth observation." Earth observation open science and 
innovation 165 (2018). 
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In highly controlled, man-made, domains (such as semiconductor and aerospace design) we 
can capture and fully model complexity within a design process. For global and natural 
phenomena, we need alternative approaches capable of interpreting data of scale and 
variety, to identify patterns and relationships that are not pre-defined or known. This is 
serviced by AI, particularly by Deep Learning and Generative AI methods. These require large 
quantities of data, often of the greatest variety possible, and over large timespans. With these 
varied Big Data, such AI methods attempt to reconstruct what they ‘see’; seeking to infer a 
model – based on the correlations across all data sources – that describes the behaviours and 
trends in the observed system whole. Whilst these approaches can be given starting 
knowledge to accelerate learning, fundamentally they build their predictive capability 
independently – not requiring a priori understanding of the system from their designers or 
operators. This can lead to nearly unbiased answers as to what governs ecosystem behaviour, 
how it is likely to evolve, how specific scenarios would impact it (for example, the impact of a 
hypothetical offshore wind installation on its surrounding ecosystem), and what sources of 
data are most important (knowing which is crucial to constraining the scale of Big Data). 

 
Photo: Tara Winstead (Pexels) 

Inherently, these approaches have a weakness in that they are predicated on data 
completeness; no method can understand something that it does not see. This is also a 
fundamental point at which human bias may be inserted, whereby an AI can be partially 
blinded through cost constraints, misassumptions, errors, or intent. Designing AI that can 
understand if it has the right quality and types of data is an area of active research, but it is 
challenging, and implementations are application specific22. It is usually through use, test, and 
iterative system design that such issues are resolved. 

 
22 There are numerous approaches to this problem, including ancillary overseer systems that model the performance of the AI system, and 
self-observation methods; the issue is central to AI system validation, and is an area of very active research. At a very high level, 
approaches tend to focus on statistical analysis of correlations between inputs and outputs, solution stability, repeatable tests, and 
analysing system uncertainty (which may indicate missing data sources). 
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In the ocean domain these approaches are already being used in a limited context, particularly 
for meteorological and climate analysis23, and for vessel identification and route prediction. 
In a wider context they have been used analysing smart cities, through to financial markets, 
and to assisting medical diagnosis, to provide long-term predictions as well as low-latency 
situational awareness, feature detection, and alerts. Whilst the principles for these AI 
approaches are general, implementations are specific. Technology translation towards 
ecosystem analysis and enhanced governance should neither be seen as trivial, necessarily 
straight forward, nor free. These tools straddle the boundary of research and application and 
will require both specific expertise and investment. The competitive demand for AI talent 
should not be underestimated – there is no surfeit of expertise, and it comes at a premium 
both in the private sector, and in the context of funding and generating high-impact research. 
Whilst many sectors may feel as if they are waking up to the potential of AI, and perhaps 
hoping for technology experts to make their case for its use, bleeding edge sectors are already 
overwhelmingly competing for this expertise and talent. Therefore, it will be incumbent on 
those seeking improved ecosystem analysis and governance to build strong links to AI 
innovators, make known their problems seeking solutions, and incentivise development. 

Industry investment in AI tools is already substantial, including in the ocean sector. 
Increasingly automated operations of complex offshore installations necessitate AI 
capabilities, for operations, monitoring, and more24. Much as with data sharing, it may be that 
through trusted co-operation cost-effective pathways to enhanced ocean governance can be 
established, facilitated by the knowledge industry has already developed, but not necessarily 
disseminated. 

Lastly, trust in AI solutions, and AI decision making, must be touched upon. Whilst we explore 
this more fully in the next section, trust in AI has a challenging technical and human 
dimension. There is a natural reluctance to place trust in non-human systems. To an extent 
this can be overcome through comprehensive demonstration and testing, but it does raise 
deep technical questions pertaining to verification and validation of ‘black box’ systems. At 
the very least, deployment of AI systems will require fail-safes and fallbacks and will likely 
take the form of a series of staggered capabilities. AI systems can be prone to bias, particularly 
more traditional variants that rely on humans to sort the importance of data, and explicitly 
specify which data to use (a recent example is the issues face recognition systems have with 
recognising faces with dark skin-tone, due to having been predominantly trained using light 
skinned image data, and well-lit images). Means to verify and validate the performance of AI 
systems must be developed alongside them, at both a human and technical level. 

 
23 A review of which is presented by Ardabili, et al. (2020). Two specific examples of current advances are Rüttgers, et al’s work on 
generative AI based typhoon trajectory prediction, and Schlör, et al’s work on using AI to model sea surface temperature variations in the 
equatorial Pacific. 
Ardabili, Sina, Amir Mosavi, Majid Dehghani, and Annamária R. Várkonyi-Kóczy. "Deep learning and machine learning in hydrological 
processes climate change and earth systems a systematic review." In International Conference on Global Research and Education, pp. 52-
62. Springer, Cham, 2019. 
Rüttgers, Mario, Sangseung Lee, Soohwan Jeon, and Donghyun You. "Prediction of a typhoon track using a generative adversarial network 
and satellite images." Scientific reports 9, no. 1 (2019): 1-15. 
Schlör, Jakob, and Bedartha Goswami. "A data-driven generative model for sea surface temperature fields in the tropical Pacific." In EGU 
General Assembly Conference Abstracts, pp. EGU21-12362. 2021. 
24 For example, see Rahmanifard, et al’s review of the uses of AI in the petroleum industry. 
Rahmanifard, Hamid, and Tatyana Plaksina. "Application of artificial intelligence techniques in the petroleum industry: a review." Artificial 
Intelligence Review 52, no. 4 (2019): 2295-2318. 
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5.2.3 Trust in Big Data & AI 

One challenge in technology translation – of any sort – is trust in the new solution. This is 
particularly the case for data technology and AI, and it is an issue with both a technical and 
human dimension. The quality, or benefit, of a new solution is irrelevant if lack of trust 
prevents uptake. In purely operational domains, trust can be generated through 
demonstration (for example, the use of AI in various forms of autonomy), governance is not 
purely operational though – it has human, economic, and political consequences. As we have 
already discussed, a barrier to establishing governance is building sufficient evidence; 
whether simply via data analysis, or through a complex, black-box, AI-driven system, the 
methodology must be trusted. Understanding and solving issues of trust are a priority, a 
perceived lack of trust can easily be used as a justification for inaction; building consensus on 
what trust means, and how it is achieved, should run before and alongside any technical 
development – not after it. 

 
Photo: Tara Winstead (Pexels) 

Building trust in data (or any information source) is an old issue, and one that is also well 
understood. Technically, trust is established through peer review and validation by neutral 
experts. It involves the scientific community testing and verifying the quality of sensors, 
sensor deployment regimes, data transfer and collation, and whatever models may sit atop 
this data layer. This process also involves establishing methods for baselining and 
communicating data quality, usually in the form of data standardisation and uncertainty 
metrics. As we move from disparate data sets to Big Data and data fusion, technical standards 
and data formats will need to be normalised across scientific domains. This is especially true 
of uncertainty metrics (e.g., range per pixel), as it is vital that data are mutually comparable. 

National rivalries are an issue when it comes to data trust, this is best circumvented by data 
being owned and produced by independent entities. UN driven solutions have an inherent 
advantage here, and technological solution acceptance needs to be demonstrated by 
independent bodies such as the UN. This also highlights the importance of collaborative 
action. People, organisations, and nations have trust in data that they have had a hand in 
producing and will be more confident in the outputs and analysis of that, whether through 
institutional or national collaborations, or distributed models of data collection such as 
platforms of opportunity. 
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Establishing trust in black-box methods, such as most AI analytics, invokes its own issues. 
Broadly there are two related problems at the core of this: it is not possible (or practically 
feasible) to view the workings of black-box systems to manually verify if they are well 
behaved, and doing what is expected; and, in some cases, the processes within the system 
are non-deterministic (such as the ‘learning’ in some, but not all, AI methods). Black-box 
verification and validation is a domain in its own right, with a multitude of approaches to 
technical testing and validation. The ‘right’ tests will depend entirely on what is implemented 
and how, however broadly, including statistical methods observing both inputs and outputs, 
verification through use (or on historical data), providing false ‘bad’ data to verify that bad 
inputs result in bad outputs, and careful algorithmic design with a view to creating reliable 
fail-states that unambiguously tell the end-user when the process should not be trusted. It 
would be an exaggeration to say that verification and validation of AI methods is a solved 
problem, it is however solvable on a per-implementation basis, and has been addressed in 
critical, complex, cases such as autonomy. 

 
Photo: Markus Spiske (Pexels) 

It is important that in developing AI systems these matters of trust and verification are 
transparently addressed, well documented, and that the wide range of user communities are 
informed as to why the systems are trustworthy. Whilst it is hard to establish in a competitive 
environment, open sourcing of tools for public scrutiny should be encouraged. Verification 
and validation should be continuous, especially for systems that learn, and users should have 
a way of interpreting the quality of outputs – presumably through a metric of uncertainty, 
combining data uncertainty with a meta-analysis of the processing. The quality of the data 
flowing into any system is also paramount; and addressing data issues can be seen as a pre-
requisite to the wide use of AI methods. It may help to visually layer AI analytics on top of 
sensing data, providing end users with an intuitive means to validate what they see. Case 
studies are also a powerful tool towards building trust and showing success. As we move to 
AI driven governance, to feasibility tests, to implementations, these case studies need to be 
built, providing a narrative that contextualises use. 

Lastly, as with all novel technologies, fail-safes and fall-back methods must exist. New 
methods do not invalidate the old, and, at least whilst the technology is nascent, we should 
work towards a hybrid system-of-systems. 
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6 Blue Economy Knowledge System (BEKS) Analysis 

6.1 Headline Findings 

NLAI’s Blue Economy Knowledge System (BEKS) is a bespoke market intelligence curation and 
activation system. BEKS utilises advanced Boolean search string techniques and targeted 
news alerts to ensure that all relevant market activity is captured and reviewed 
systematically. A comprehensive, searchable database of over 15,000 filtered Blue Economy 
(BE) news alerts is already in place, this builds day-by-day. Tailored BEKS campaigns can be 
aligned to users’ needs and areas of interest, to track areas of research, individuals of interest, 
companies, competitors, territories, and general market conditions. All of these news alerts 
can be set up to drop into one project-dedicated inbox for daily, weekly or ‘as-it-happens’ 
review and analysis. Such intel can feed into market briefings, can help to identify emerging 
trends, or identify new contacts with whom to engage on our areas of interest. 

BEKS draws on all open-source intelligence related to the search terms specified. It works on 
a standard change detection model, whereby any amendments to indexed web pages are 
accessed as appropriate. This means that it pulls in all published news alerts, but also changes 
to academic websites where new papers may be posted (if, for example, a press release about 
the new paper has not been issued). If any specific academic journals are considered of great 
importance, these can be specifically targeted. 

For this project, BEKS was utilised to capture data relating to the advances of Big Data and 
Artificial Intelligence in global governance of ocean spaces. This data capture also had the aim 
of identifying key sub-sectors of ocean governance, i.e., marine monitoring surveillance, 
marine conservation, and mapping marine ecosystems. By using BEKS, we were able to 
capture over 140 relevant examples to inform this study. The data ranged geographically, 
spread across all oceans and seas. The spread of data on AI and Big Data was generous. 
However, the most common data source was concerned with Marine Monitoring & 
Surveillance and how Big Data and AI solutions could improve efforts for these technologies.  

The use of AI in Marine Monitoring & Surveillance was more popular than Big Data; AI was 
the more popular term in the search results. This is likely due to the broader public 
understanding of AI compared to Big Data, which is a lesser-known concept. However, Big 
Data was a common subject when discussing satellite-based solutions such as remote sensing, 
earth observation and geospatial data. 

Unfortunately, there was not a great deal collected that directly discussed the Sargasso Sea 
or the potential for technology solutions as a toolkit for ocean governance in this specific 
region. This may be because there is a lack of awareness or understanding about these 
solutions and the potential roles they play in ocean governance, or because there has been 
no practical consideration to expand the use of these tools in the Sargasso Sea. Thus, in this 
study we conclude that information specific to the Sargasso Sea was more accurately sourced 
by our Expert and User Group stakeholder engagement. 

There are 2 BEKS data “cuts” included as attachments to this Interim Report. The bespoke 
BEKS inbox related to this project remains “open” and continues to gather useful and relevant 
information and data. This may be analysed if/as required if further research were 
commissioned that would continue to build understanding of the key relationships between 
Ocean Governance & Big Data/AI. 
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7 Appendices 

7.1 Questionnaire responses 

A starting point for this project was a questionnaire distributed to the Sargasso Sea 
Commission’s expert and user groups, with a view to understanding the perceived need for 
Big Data and AI solutions for high seas governance, how consistent this was across different 
stakeholder groups, and what solutions were already realised. This was not (and was not 
intended to be) a statistically significant study, with a total of 17 respondents, and a notable 
bias towards stakeholders from academia, NGOs, and government bodies. Due to these 
limitations, we do not present a separate analysis of the questionnaire, however, the 
information gained from it has been reflected in the overall analysis. The questionnaire also 
provided a snapshot of views, which helped us to structure the interviews discussed in Section 
7.2. For the interested reader questionnaire responses are attached to this report. 

7.2 Interview responses 

A component to this project was targeted interviews with SSC expert and user group 
members, including representatives of the Sargasso Sea Commission, UNDP, Global Fishing 
Watch, NASA, and REV Ocean. The purpose of these interviews was to better understand the 
needs and challenges surrounding ocean governance, both in general, and specific to the 
Sargasso Sea. Further to this, the interviews explored the potential role of Big Data, artificial 
intelligence, and remote sensing technologies in enabling and supporting governance and 
enforcement. 

We recorded the interviews in the form of recorded notes; these are not transcripts, and 
should not be taken as a literal record, free from the interpretive lens of the interviewer. As 
a general observation, we note that the views expressed by interviewees were in mutual 
agreement; each stakeholder group elaborated most on their own domain, however their 
perspectives on ocean governance, technology needs, and even examples of ‘good’ 
governance, were in agreement across the board. A caveat to this study is the lack of blue 
economy/industry stakeholders amongst interviewees, particularly those who would be at 
the receiving end of regulations, for example in the fishing industry. Whilst one should bear 
this in mind, we do not feel that it is a limitation of this work; our purpose in this study is to 
articulate why high seas ocean governance is needed, and what role the aforementioned 
technologies have to play. We do not seek to comment on the degree, or implementation, of 
governance that is acceptable, or to recommend policies. 

From the interviews ten key themes were identified: The need for governance; Bringing 
governance to the high seas and the Sargasso Sea; The relationship between policy, 
governance, and technology; The role of technology in ocean governance; Big Data, and data 
requirements; The use of artificial intelligence; Remote sensing technologies; Enforcement; 
Trust in data and AI; and Examples of good governance. These have all been drawn out and 
analysed in the report body. 

7.3 BEKS evidence pack 

The evidence from 2 BEKS data “cuts” dated 9th & 24th November 2021, are attached (pdf 
format for convenience) to this Report.  
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